Volume 26 Issue 3
Apr 2015
Turn off MathJax
Article Contents
ZHANG  Yan-Geng, DUAN  Zhuo-Ping, PI  Ai-Guo, ZHANG  Lian-Sheng, OU  Zhuo-Cheng, HUANG Feng-Lei. Studies on Formation and Propagation of Failure Waves in Soda-lime Glass[J]. Chinese Journal of High Pressure Physics, 2012, 26(3): 241-250. doi: 10.11858/gywlxb.2012.03.001
Citation: ZHANG  Yan-Geng, DUAN  Zhuo-Ping, PI  Ai-Guo, ZHANG  Lian-Sheng, OU  Zhuo-Cheng, HUANG Feng-Lei. Studies on Formation and Propagation of Failure Waves in Soda-lime Glass[J]. Chinese Journal of High Pressure Physics, 2012, 26(3): 241-250. doi: 10.11858/gywlxb.2012.03.001

Studies on Formation and Propagation of Failure Waves in Soda-lime Glass

doi: 10.11858/gywlxb.2012.03.001
  • Received Date: 01 Jun 2011
  • Rev Recd Date: 21 Jul 2011
  • Publish Date: 15 Jun 2012
  • A series of plate impact experiments were conducted for soda-lime glass specimens on a one-stage gas gun in order to investigate the so-called failure wave phenomena under different impact velocities. In each shot, four pieces of specimens with different thicknesses are impacted simultaneously and the longitudinal stress histories at the backing surfaces of each of them are measured by manganin piezo-resistive stress sensors. Hence, the failure wave trajectory under a certain dynamic loading can be obtained by only one shot. Then the formation and propagation of the failure wave under different shock conditions can be obtained by changing impact velocities. The results show that the delay time for the failure wave to initiate decreases with the magnitude of impact loads, while correspondingly the failure wave velocity increases. In the end, the elastic statistical crack model is applied to describe the fracture mechanism of the soda-lime glass under shock loading and several plate impacts under different conditions are simulated by the LS-DYNA finite element program. The simulated results of the transverse stress and free surface particle velocity histories can be used to describe the failure wave phenomenon, and the trajectories obtained by simulation are compatible with experimental measurements.

     

  • loading
  • Rasorenov S V, Kanel G I, Fortov V E, et al. The fracture of glass under high pressure impulsive loading [J]. High Press Res, 1991, 6: 225-232.
    Brar N S, Bress S J, Rosenberg Z. Impact-induced failure waves in glass bars and plates [J]. Appl Phys Lett, 1991, 59: 3396-3398.
    Kanel G I, Bogach A A, Razorenov S V, et al. A study of the failure wave phenomenon in brittle materials [A]//Furnish M D, Gupta Y M, Forbes J W. Shock Compression of Condensed Matter-2003 [C]. New York: AIP Conference Proceedings, 2004: : 739-742.
    He H L. Dynamic response and microstructure damage of brittle materials under shock wave compression [D]. Sichuan: Institute of Fluid Physics, CAEP, 1997.
    Raiser G F, Clifton R J. Failure waves in uniaxial compression of an aluminosilicate glass [A]//Proceedings of Joint AIRAPT/APS Conference [C]. Colorado Springs, CO, 1993.
    Brar N S. Failure waves in glass and ceramics under shock compression [A]//Furnish M D, Chhabildas L C, Hixson R S. Shock Compression of Condensed Matter-1999 [C]. Snowbird, Utah: AIP, 2000: 601-606.
    Zhao J H. Experimental and theoretical research on failure waves in glass-like brittle materials under shock wave loading [D]. Beijing: Institute of Mechanics, Chinese Academy of Sciences, 2001. (in Chinese)
    赵剑衡. 冲击加载作用下玻璃等脆性材料失效波的实验与理论分析 [D]. 北京: 中国科学院力学研究所, 2001.
    Kanel G I, Razorenov S V, Savinykh A S, et al. A study of failure wave phenomenon in glasses compressed at different levels [J]. J Appl Phys, 2005, 98: 113523(1)-113523(7).
    Bourne N K, Rosenberg Z, Field J E. High-speed photography of compression failure waves in glasses [J]. J Appl Phys, 1995, 78: 3736-3739.
    Chaudhri M M. The role of residual stress in a Prince Rupert's drop of soda-lime glass undergoing a self-sustained and stable destruction/fracture wave [J]. Phys Status Solidi A, 2009, 206: 1410-1413.
    Cherepanov G P. Fracture waves revisited [J]. Int J Fract, 2009, 159: 81-84.
    Chen D P, He H L, Jing F Q. Delayed failure of the shock compressed inhomogeneous brittle material [J]. J Appl Phys, 2007, 102: 033519(1)-03351(5).
    Kanel G I, Rasorenov S V, Fortov, V E. The failure waves and spallations in homogeneous brittle material [A]//Schmidt S C, Dick R D, Forbes J W, et al. Shock Compression of Condensed Matter-1991 [C]. Amsterdam: North-Holland, 1992: 451-454.
    Liu Z F, Yao G W, Zhan X Y. A damage accumulating modeling of failure waves in glass under high velocity impacting [J]. Appl Math Mech, 2001, 22(9): 983-987. (in Chinese)
    刘占芳, 姚国文, 詹先义. 高速冲击条件下玻璃中破坏波的损伤累计模拟 [J]. 应用数学与力学, 2001, 22(9): 983-987.
    Zhang Y G, Duan Z P, Zhang L S, et al. Experimental research on failure waves in soda-lime glass [J]. Exp Mech, 2011, 51: 247-253.
    Bourne N K, Millett J C F, Rosenberg Z, et al. On the shock induced failure of brittle solids [J]. J Mech Phys Solids, 1998, 46(10): 1887-1908.
    Bourne N K, Millett J C F, Rosenberg Z. Failure in shocked high-density glass [J]. J Appl Phys, 1996, 80: 4328-4331.
    Kanel G I, Bogatch A A, Razorenov S V, et al. Transformation of shock compression pulse in glass due to the failure wave phenomena [J]. J Appl Phys, 2002, 92: 5045-5052.
    Rosenberg Z, Ashuach Y, Dekel E. More on the behavior of soda lime glass under shock loading [J]. Int J Impact Eng, 2008, 35: 820-828.
    Dienes J K. A statistical theory of fragmentation [A]//Kim Y S. Proceedings of the 19th US Symposium on Rock Mechanics [C]. University of Nevada, 1978: 51-55.
    Addessio F L, Johnson J N. A constitutive model for the dynamic response of brittle materials [J]. J Appl Phys, 1990, 67: 3275-3286.
    Zuo Q H, Addessio F L, Dienes J K, et al. A rate-dependent damage model for brittle materials based on the dominant crack [J]. Int J Solids Struct, 2006, 43: 3350-3380.
    Tuler F R, Butcher B M. A criterion for the time dependence of dynamic fracture [J]. Int J Frat Mech, 1968, 4: 431-437.
    Freund L B. Dynamic Fracture Mechanics [M]. Cambridge: Cambridge University Press, 1993.
    Klepaczko H S Jr. Numerical study of spalling in an aluminum alloy 7020-T6 [J]. Int J Impact Eng, 1999, 22: 649-73.
    Bouzid S, Nyoungue A, Azari Z, et al. Fracture criterion for glass under impact loading [J]. Int J Impact Eng, 2001, 25: 831-845.
    Evans A G. Slow crack growth in brittle materials under dynamic loading conditions [J]. Int J Fract, 1974, 10(2): 251-259.
    Charles R J. Dynamic fatigue of glass [J]. J Appl Phys, 1958, 12: 1652-1657.
    Dienes J K. Strain-softening via SCRAM, LA-UR-98-3620 [R]. Washington, DC: Los Alamos National Laboratory, 1998.
    Espinosa H D, Xu Y P, Brar N S. Micromechanics of failure waves in glass: Ⅱ, modeling [J]. J Am Ceram Soc, 1997, 80(8): 2074-2085.
    Chen D N, Fan C L, Xie S G et al. Study on constitutive relations and spall models for oxygen-free high conductivity copper under planar shock test [J]. J Appl Phys, 2007, 101: 063532(1)-063532(9).
    Zhou J W, Xu W Y, Yang X G. A microcrack damage model for brittle rocks under uniaxial compression [J]. Mech Res Commun, 2010, 37: 399-405.
    Rajendran A M, Grove D J. Modeling the shock response of silicon carbide, boron carbide and titanium diboride [J]. Int J Impact Eng, 1996, 18(6): 611-631.
    Ayatollahi M R, Aliha M R M. Mixed mode fracture in soda lime glass analyzed by using the generalized MTS criterion [J]. Int J Solids Struct, 2009, 46: 311-321.
    Rao Q H, Sun Z Q, Stephansson O, et al. Shear fracture (Mode Ⅱ) of brittle rock [J]. Int J Rock Mech Min, 2003, 40(3): 355-375.
    Ayatollahi M R, Torabi A R. Determination of mode Ⅱ fracture toughness for U-shaped notches using Brazilian disc specimen [J]. Int J Solids Struct, 2010, 47: 454-465.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(7919) PDF downloads(496) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return