Volume 26 Issue 1
Apr 2015
Turn off MathJax
Article Contents
ZHANG Bo, Lee John H S, BAI Chun-Hua. Experimental Investigation of the Influence of Highly Argon Dilution on the Critical Initiation Energy for Direct Initiation of C2H2-2.5O2 Mixtures[J]. Chinese Journal of High Pressure Physics, 2012, 26(1): 55-62. doi: 10.11858/gywlxb.2012.01.008
Citation: ZHANG Bo, Lee John H S, BAI Chun-Hua. Experimental Investigation of the Influence of Highly Argon Dilution on the Critical Initiation Energy for Direct Initiation of C2H2-2.5O2 Mixtures[J]. Chinese Journal of High Pressure Physics, 2012, 26(1): 55-62. doi: 10.11858/gywlxb.2012.01.008

Experimental Investigation of the Influence of Highly Argon Dilution on the Critical Initiation Energy for Direct Initiation of C2H2-2.5O2 Mixtures

doi: 10.11858/gywlxb.2012.01.008
  • Received Date: 13 Jul 2010
  • Rev Recd Date: 16 Aug 2010
  • Publish Date: 15 Feb 2012
  • Direct initiation is achieved via a high voltage capacitor spark discharge, and the critical energy is accurately estimated from the analysis of the current output. A good agreement is found by comparing the critical initiation energy from experimental measurement and Lee's surface energy model. The influences of highly argon dilution on the critical energy of direct initiation are investigated experimentally for C2H2-2.5O2 and 70% argon diluted C2H2-2.5O2 mixtures. The results show that the critical energy is inversely exponential to the initial pressure for C2H2-2.5O2 mixtures with and without highly argon. Both the experimental and theoretical results indicate that dilution of highly argon in C2H2-2.5O2 enhances the critical initiation energy for direct initiation at the same initial condition. Since the critical initiation energy is proportional to the cube of ZND induction zone length, the dilution of highly argon increases the ZND induction zone length of C2H2-2.5O2 mixture under the same initial pressure, and accordingly the critical initiation energy is raised remarkably.

     

  • loading
  • Lee J H S. Initiation of gaseous detonation [J]. Annu Rev Phys Chem, 1977, 28: 75-104.
    Lee J H S. Dynamic parameters of gaseous detonations [J]. Annu Rev Fluid Mech, 1984, 16: 311-336.
    Zel'dovich Y B, Kogarko S M, Simonov N N. An experimental investigation of spherical detonation in gases [J]. Sov Phys Tech Phys, 1957, 1: 1689-1713.
    Matsui H, Lee J H S. On the measure of the relative detonation hazards of gaseous fuel-oxygen and air mixture [J]. Proc Combust Inst, 1978, 17: 1269.
    Lee J H, Matsui H. A comparison of the critical energies for direct initiation of spherical detonations in acetylene-oxygen mixtures [J]. Combust flame, 1977, 28: 61-66.
    Lee J H S, Higgins A J. Comments on criteria for direct initiation of detonation [J]. Phil Trans R Soc Lond A, 1999, 357: 3503-3521.
    Benedick W B, Guirao C M, Knystautas R, et al. Critical charge for the direct initiation of detonation in gaseous fuel-air mixtures [A]//Progress in Astronautics and Aeronautics [C]. Reston, USA: AIAA, 1986, 106: 181-202.
    Lee J H S, Guirao C M. Fuel-air explosions [M]. Waterloo, Ontario, Canada: University of Waterloo Press, 1982: 157.
    Knystautas R, Lee J H S. On the effective energy for direct initiation of gaseous detonations [J]. Combust Flame, 1976, 27: 221-228.
    Kamenskihs V, Ng H D, Lee J H S. Measurement of critical energy for direct initiation of spherical detonations in stoichiometric high-pressure H2-O2 mixtures [J]. Combust Flame, 2010, 157(9): 1795-1799.
    Zhang B, Kamenskihs V, Ng H D, et al. Direct blast initiation of spherical gaseous detonations in highly argon diluted mixtures [J]. Proc Combust Inst, 2011, 33(2): 2265-2271.
    Desbordes D, Guerraud C, Hamada L, et al. Failure of the classical dynamic parameters relationships in highly regular cellular detonation systems [A]//Progress in Astronautics and Aeronautics [C]. Reston, USA: AIAA, 1993, 153: 347-359.
    Knystautas R, Lee J H, Guirao C M. The critical tube diameter for detonation failure in hydrocarbon-air mixtures [J]. Combust flame, 1982, 48: 63-83.
    Radulescu M I. The propagation and failure mechanism of gaseous detonations: Experiments in porous-walled tubes [D]. Montreal, Canada: McGill University, 2003.
    Kaneshige M, Shepherd J E. Detonation database, FM97-8 [R]. Pasadena, USA: California Institute of Technology, 1997.
    Kee R J, Rupley F M, Miller J A. Chemkin-Ⅱ: A fortran chemical kinetics package for the analysis of gas-phase chemical kinetics, SAND89-8009 [R]. Washington DC, USA: Sandia National Laboratories, 1989.
    Konnov A A. Detailed reaction mechanism for small hydrocarbons combustion: Project-in-progress on the world wide web [EB/OL]. http: //homepages. vub. ac. be/~akonnov/science/mechanism/15Bel_abs. html.
    Shepherd J E. Detonation in gases [A]//Progress in Astronautics and Aeronautics [C]. Reston, USA: AIAA, 2009, 32: 83-98.
    Carnasciali F, Lee J H S, Knystautas R, et al. Turbulent jet initiation of detonation [J]. Combust Flame, 1991, 84(1-2): 170-180.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(7164) PDF downloads(523) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return