Volume 25 Issue 6
Apr 2015
Turn off MathJax
Article Contents
WANG Jin-Xiang, ZHOU Nan, WANG Xiao-Xu, HANG Yi-Fu. Study on the Grain-Size Distribution Rule and Influence Factors of Nanocrystalline Copper Fabricated under Explosive Loading[J]. Chinese Journal of High Pressure Physics, 2011, 25(6): 501-507. doi: 10.11858/gywlxb.2011.06.004
Citation: WANG Jin-Xiang, ZHOU Nan, WANG Xiao-Xu, HANG Yi-Fu. Study on the Grain-Size Distribution Rule and Influence Factors of Nanocrystalline Copper Fabricated under Explosive Loading[J]. Chinese Journal of High Pressure Physics, 2011, 25(6): 501-507. doi: 10.11858/gywlxb.2011.06.004

Study on the Grain-Size Distribution Rule and Influence Factors of Nanocrystalline Copper Fabricated under Explosive Loading

doi: 10.11858/gywlxb.2011.06.004
  • Received Date: 24 May 2010
  • Rev Recd Date: 26 Oct 2010
  • Publish Date: 15 Dec 2011
  • Nanocrystalline copper was fabricated by severe plastic deformation of coarse-grained copper at high strain rate under explosive loading. The average grain size of the samples was tested by X-ray diffraction analysis, and the deformation process was simulated recur to LS-DYNA3D finite element program. The influence of strain on the grain refining were analyzed quantitatively. The results show that it is feasible to fabricate nanocrystalline copper by explosively dynamic plastic deformation of coarse-grained copper and the grain size of the NC copper can be controlled less than 100 nm, the higher strain is beneficial to the grain refining, and the distribution of the grain size is not uniform along the loading direction.

     

  • loading
  • Morris D G. Mechanical Behavior of Nanostructured Materials [M]. Geneva: Trans Tech Pub Inc, 1998.
    Wang H T, Yang W. Mechanical Behavior of Nanocrystalline Metals [J]. Adv Mech, 2004, 34(3): 314-326. (in Chinese)
    王宏涛, 杨卫. 纳米金属的力学行为 [J]. 力学进展, 2004, 34(3): 314-326.
    Sanders P G, Eastman J A, Weertman J R, et al. Elastic and Tensile Behavior of Nanocrystalline Copper and Palladium [J]. Acta Mater, 1997, 45(10): 4019-4025.
    Lu L, Li S X, Lu K, et al. An Abnormal Strain Rate Effect on Tensile Behavior in Nanocrystalline Copper [J]. Scripta Mater, 2001, 45(10): 1163-1169.
    Zhang L D, Mou J M. Nano-Materials and Nano-Structure [M]. Beijing: Science Press, 2001. (in Chinese)
    张立德, 牟季美. 纳米材料和纳米结构 [M]. 北京: 科学出版社, 2001.
    Benkassem S, Capolungo L, Cherkaoui M. Mechanical Proerties and Multi-Scale Modeling of Nanocrystalline Materials [J]. Acta Mater, 2007, 55(10): 3563-3572.
    Lichtenberger A, Bohmann A. Influence of Structure and Metallurgical State of a Liner on the Performance of a Shaped Charge [A]//Proceeding of the 6th International Symposium on Ballistics [C]. Orlando, 1981.
    Li A M, Zhang X Y, Zhao X C, et al. Progress in Preparation Technology and Mechanical Properties of Nanocrystalline Bulk Metals [J]. Materials Review, 2007, 21(4): 111-116. (in Chinese)
    李安敏, 张喜燕, 赵新春. 纳米晶金属块体材料制备技术与力学性能研究进展 [J]. 材料导报, 2007, 21(4): 111-116.
    Gleiter H. Nanostructured Materials: State of the Art and Perspectives [J]. Nanostructured Materials, 1995, 16: 3-14.
    Valiev R Z, Alexandrov I V. Bulk Nanostructured Materials by Severe Plastic Deformation [M]. Lin B N, Translated by Lin B N. Beijing: Science Press, 2006. (in Chinese)
    Valiev R Z, Alexandrov I V. 剧烈塑性形变纳米材料 [M]. 林柏年, 译. 北京: 科学出版社, 2006.
    Champion Y, Langlois C, Gurin S, et al. Analysis of Ductility of Nanostructured Copper Prepared by Powder Metallurgy [J]. Eng Fract Mech, 2008, 75(12): 3624-3632.
    Jankowski A F, Saw C K, Harper J F, et al. Nanocrystalline Growth and Grain-Size Effects in Au-Cu Electrodeposits [J]. Thin Solid Films, 2006, 494(1-2): 268-273.
    Chen F, Yang L M, Zhang M H. Producing Nano-Structured Copper Specimens under the High Strain Rate Load and Severe Plastic Deformation [J]. Journal of Ningbo University (Natural Science Engineering Edition), 2006, 19(4): 481-485. (in Chinese)
    陈锋, 杨黎明, 张明华. 用高应变率大应变载荷制备纳米晶铜试件 [J]. 宁波大学学报(理工版), 2006, 9(4): 481-485.
    Deng X L, Zhu W J, He H L, et al. Plasticity Mechanism Associated with Nano-Void Growth under Impact Loading along 〈111〉 Direction in Copper [J]. Chinese Journal of High Pressure Physics, 2007, 21(1): 59-65. (in Chinese)
    邓小良, 祝文军, 贺红亮, 等. 沿〈111〉晶向冲击加载下铜中纳米孔洞增长的塑性机制研究 [J]. 高压物理学报, 2007, 21(1): 59-65.
    Johnson G R, Cook W H. Fracture Characteristics of Three Metals Subjected to Various Strain Rates, Temperatures and Pressures [J]. Eng Frac Mech, 1985, 21(1): 31-48.
    Editorial Group of Explosion and Its Effect by the Eighth Department of Beijing Institute of Technology. Explosion and Its Effect [M]. Beijing: National Defense Industry Press, 1979: 274-280. (in Chinese)
    北京工业学院八系《爆炸及其作用》编写组. 爆炸及其作用 [M]. 北京: 国防工业出版社, 1979: 274-280.
    Johnson G R, Cook W H. A Constitutive Model and Data for Metals Subjected to Large Strain, High Strain Rates and High Temperatures [A]//Proceedings of the Seventh International Symposium on Ballistic [C]. The Netherlands: The Hague, 1983: 541-547.
    Zhang B, Shim V P W. Determination of Inelastic Heat Fraction of OFHC Copper through Dynamic Compression [J]. Int J Impact Eng, 2010, 37(1): 50-68.
    Cooper S R, Benson D J, Nesterenko V F. A Numerical Exploration of the Role of Void Geometry on Void Collapse and Hot Spot Formation in Ductile Materials [J]. Int J Plasticity, 2000, 16: 525-540.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(7761) PDF downloads(626) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return