Volume 23 Issue 4
Apr 2015
Turn off MathJax
Article Contents
XUE Xin-Ying, SUN Jiu-Xun, TIAN Rong-Gang. Analytic Equation of State for Generalized Morse Potential Fluid and Application to N2 Fluid[J]. Chinese Journal of High Pressure Physics, 2009, 23(4): 288-298 . doi: 10.11858/gywlxb.2009.04.009
Citation: XUE Xin-Ying, SUN Jiu-Xun, TIAN Rong-Gang. Analytic Equation of State for Generalized Morse Potential Fluid and Application to N2 Fluid[J]. Chinese Journal of High Pressure Physics, 2009, 23(4): 288-298 . doi: 10.11858/gywlxb.2009.04.009

Analytic Equation of State for Generalized Morse Potential Fluid and Application to N2 Fluid

doi: 10.11858/gywlxb.2009.04.009
More Information
  • Corresponding author: SUN Jiu-Xun
  • Received Date: 16 Oct 2008
  • Rev Recd Date: 16 Mar 2009
  • Publish Date: 15 Aug 2009
  • The analytic expressions for equation of state (EOS) and thermodynamic properties have been derived for the generalized Morse (GM) potential fluids, by using the Ross variational perturbation theory and the analytic Percus-Yevick (PY) expression of radial distribution function of hard spheres. Extensive comparison of the numerical results with computer simulations shows that the precision of the analytic Ross theory is equivalent to or slightly better than the non-analytic modified Weeks-Chandler-Anderson (mWCA) theory, and is much better than the complicated optimized reference hyper-netted chain (RHNC) theory. This analytic expressions for equation of state have been applied to N2 fluid at ambient temperature and low pressure (below 1 GPa) with the parameters of the generalized Morse potential are obtained by fitting to experimental data, results of prediction of the pressure above 1 GPa validate the analytic EOS with good agreement within a wide range of pressure and temperature.

     

  • loading
  • Barker J A, Henderson D. Perturbation Theory and Equation of State for Fluids (Ⅱ)-A Successful Theory of Liquids [J]. J Chem Phys, 1967, 47(11): 4714-4721.
    Weeks J D, Chandler D, Andersen H C. Role of Repulsive Forces in Determining the Equilibrium Structure of Simple Liquids [J]. J Chem Phys, 1971, 54(12): 5237-5247.
    Ross M. A High-Density Fluid-Perturbation Theory Based on an Inverse 12th-Power Hard-Sphere Reference System [J]. J Chem Phys, 1979, 71(4): 1567-1571.
    Ross M, Ree F H, Young D A. The Equation of State of Molecular Hydrogen at Very High Density [J]. J Chem Phys, 1983, 79(3): 1487-1494.
    Holmcs N C, Ross M, Ncllis W L. Temperature Measurements and Dissociation of Shock-Compressed Liquid Deuterium and Hydrogen [J]. J Phys Rev B, 1995, 52(22): 15835-15845.
    Tang Y. Role of the Barker-Henderson Diameter in Thermodynamics [J]. J Chem Phys, 2002, 116(15): 6694-6700.
    Tang Y, Lu B C-Y. An Analytical Analysis of the Square-Well Fluid Behaviors [J]. J Chem Phys, 1994, 100(9): 6665-6671.
    Tang Y, Wang Z, Lu B C-Y. Thermodynamic Calculations of Linear Chain Molecules Using a SAFT Model [J]. J Mol Phys, 2001, 99(1): 65-76.
    Kang H S, Lee C S, Ree T, et al. A Perturbation Theory of Classical Equilibrium Fluids [J]. J Chem Phys, 1985, 82(1): 414-423.
    Lado F. Perturbation Correction for the Free Energy and Structure of Simple Fluids [J]. J Phys Rev A, 1973, 8(5): 2548-2552.
    Lado F, Foiles S M, Ashcroft N W. Solutions of the Reference-Hypernetted-Chain Equation with Minimized Free Energy [J]. J Phys Rev A, 1983, 28(4): 2374-2379.
    Talbot J, Lebowitz J L, Waisman E M, et al. A Comparison of Perturbative Schemes and Integral Equation Theories with Computer Simulations for Fluids at High Pressures [J]. J Chem Phys, 1986, 85(4): 2187-2192.
    Vortler H L, Nezbeda I, Martin L. The Exp-6 Potential Fluid at Very High Pressures: Computer Simulations and Theory [J]. J Mol Phys, 1997, 92(5): 813-824.
    Wertheim M S. Exact Solution of the Percus-Yevick Integral Equation for Hard Spheres [J]. J Phys Rev Lett, 1963, 10(8): 321-323.
    Thiele E. Effect of Pressure on the Resistance of Fused-Ring Aromatic Compounds [J]. J Chem Phys, 1963, 39(3): 474-479.
    Michels A, Lunbeck R J, Wolker J. Thermodynamical Properties of Nitrogen as Functions of Density and Temperature between -125 ℃ and +150 ℃ and Densities up to 760 Amagat [J]. J Physica, 1951, 17(9): 801-816.
    Robertson S L, Babb S E Jr. Isotherms of Nitrogen to 400 ℃ and 10000 ℃ [J]. J Chem Phys, 1969, 50(10): 4560-4564.
    Johnson J D, Shaw M S, Holian B L. The Thermodynamics of Dense Fluid Nitrogen by Molecular Dynamics [J]. J Chem Phys, 1984, 80(3): 1279-1294.
    Strak P, Krukowski S. Equation of State of Nitrogen(N2) at High Pressures and High Temperatures: Molecular Dynamics Simulation [J]. J Chem Phys, 2006, 124(13): 1345011-1345019.
    Strak P, Krukowski S. Molecular Nitrogen-N2 Properties: The Intermolecular Potential and the Equation of State [J]. J Chem Phys, 2007, 126(19): 1945011-1945018.
    Barin I. Thermochemical Data of Pure Substances(3rd ed) [M]. New York: Wein-Heim, 1994: 79-101.
    Carnahan N F, Starling K E. Equation of State for Nonattracting Rigid Spheres [J]. J Chem Phys, 1969, 51(2): 635-636.
    Frisch H L, Katz J L, Praestgaard E, et al. High-Temperature Equation of State-Argon [J]. J Phy Chem, 1966, 70(6): 2016-2020.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(7921) PDF downloads(723) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return