Volume 23 Issue 4
Apr 2015
Turn off MathJax
Article Contents
BAI Yu-Hao, YUN Guo-Hong, Narisu. Effect of Tensile Stress on Exchange Bias in Ferromagnetic/Antiferromagnetic Bilayers[J]. Chinese Journal of High Pressure Physics, 2009, 23(4): 252-260 . doi: 10.11858/gywlxb.2009.04.003
Citation: BAI Yu-Hao, YUN Guo-Hong, Narisu. Effect of Tensile Stress on Exchange Bias in Ferromagnetic/Antiferromagnetic Bilayers[J]. Chinese Journal of High Pressure Physics, 2009, 23(4): 252-260 . doi: 10.11858/gywlxb.2009.04.003

Effect of Tensile Stress on Exchange Bias in Ferromagnetic/Antiferromagnetic Bilayers

doi: 10.11858/gywlxb.2009.04.003
More Information
  • Corresponding author: YUN Guo-Hong
  • Received Date: 16 Nov 2008
  • Rev Recd Date: 24 Feb 2009
  • Publish Date: 15 Aug 2009
  • Based on the principle of minimal energy and Stoner-Wohlfarth model, the effect of the tensile stress on the exchange bias for ferromagnetic/antiferromagnetic bilayers has been investigated. When the applied field is absent, according to the relation between the energy of the system and the orientation of ferromagnetic magnetization, the location of the intrinsic easy axes and intrinsic hard axes of the system have been obtained. It is found that the system will be in monostable state or bistable state, which is controlled by the competition between the uniaxial anisotropy and the exchange anisotropy of the system. Monostable state and bistable state of the system determine the angular dependence of exchange bias immediately. When the applied field is parallel to the intrinsic easy axes and intrinsic hard axes, by analyzing the magnetization process, we find that one of the switching field of the hysteresis loop shows a jump, while the other is kept constant, and consequently the exchange bias field and the coercivity will appear a step. Both the exchange bias field and the coercivity have a greater value at the point of step. The numerical calculations indicate that both the magnitude and the orientation of the tensile stress will significantly affect the exchange bias by making a transition between monostable state and bistable state in the system. This transition induces a significant change in angular dependence of the exchange bias. Our results demonstrate that tensile stress is a viable way to control and tune the exchange bias of the ferromagnetic/antiferromagnetic bilayers.

     

  • loading
  • Meiklejohn W H, Bean C P. New Magnetic Anisotropy [J]. Phys Rev, 1956, 102(5): 1413-1414.
    Heim D E, Fontana R E Jr, Tsang C. Design and Operation of Spin Valve Sensors [J]. IEEE Trans Magn, 1994, 30(2): 316-321.
    Daughton J M, Chen Y J. GMR Materials for Low Field Applications [J]. IEEE Trans Magn, 1993, 29(6): 2705-2710.
    Dieny B. Giant Magnetoresistance in Spin-Valve Multilayers [J]. J Magn Magn Mater, 1994, 136(3): 335-359.
    Nogus J, Schuller I K. Exchange Bias [J]. J Magn Magn Mater, 1999, 192(2): 203-232.
    Stamps R L. Mechanisms for Exchange Bias [J]. J Phys D(Appl Phys), 2000, 33(23): R247-R268.
    Kiwi M. Exchange Bias Theory [J]. J Magn Magn Mater, 2001, 234(3): 584-595.
    Zhou S M, Li H Y, Yuan S J, et al. Exchange Bias in Ferromagnet/Antiferromagnet Bilayers [J]. Prog in Phys, 2003, 23(1): 62-81. (in Chinese)
    周仕明, 李合印, 袁淑娟, 等. 铁磁/反铁磁双层膜中交换偏置 [J]. 物理学进展, 2003, 23(1): 62-81.
    Li M H, Yu G H, He K, et al. Short-Range Exchange Coupling in the AFM/FM Bilayers with a Spacer Layer [J]. Acta Phys Sin, 2002, 51(12): 2854-2857. (in Chinese)
    李明华, 于广华, 何珂, 等. 具有分隔层Bi的反铁磁/铁磁双层薄膜间的短程交换耦合 [J]. 物理学报, 2002, 51(12): 2854-2857.
    Li M H, Yu G H, Jiang H W, et al. Effect of Ta and Ta/Cu Buffers on the Exchange Bias Field of NiFe/FeMn Bilayers [J]. Acta Phys Sin, 2001, 50(11): 2230-2234. (in Chinese)
    李明华, 于广华, 姜宏伟, 等. Ta, Ta/Cu缓冲层对NiFe/FeMn双层膜交换偏置场的影响 [J]. 物理学报, 2001, 50(11): 2230-2234.
    Meiklejohn W H, Bean C P. New Magnetic Anisotropy [J]. Phys Rev, 1957, 105(3): 904-913.
    Mauri D, Siegmann H C, Bagus P S, et al. Simple Model for Thin Ferromagnetic Films Exchange Coupled to an Antiferromagnetic Substrate [J]. J Appl Phys, 1987, 62(7): 3047-3049.
    Malozemoff A P. Random-Field Model of Exchange Anisotropy at Rough Ferromagnetic-Antiferomagnetic Interfaces [J]. Phys Rev B, 1987, 35(7): 3679-3682.
    Koon N C. Calculations of Exchange Bias in Thin Films with Ferromagnetic/Antiferromagnetic Interfaces [J]. Phys Rev Lett, 1997, 78(25): 4865-4868.
    Stiles M D, McMichael R D. Model for Exchange Bias in Polycrystalline Ferromagnet-Antiferromagnet Bilayers [J]. Phys Rev B, 1999, 59(5): 3722-3733.
    Keller J, Miltenyi P, Beschoten B, et al. Domain State Model for Exchange Bias. ⅠTheory [J]. Phys Rev B, 2002, 66(1): 014430(1)-1014430(9).
    Mitchell P V, Mountfield K R, Artman J O. Stress-Induced Anisotropy in Co-Cr Thin Films [J]. J Appl Phys, 1988, 63(8): 2917-2919.
    Garcia D, Castao F J, Vzquez M, et al. Crossed Anisotropies in FeB/CoSiB Bilayers Induced by the Bowed-Substrate Sputtering Technique [J]. Appl Phys Lett, 1999, 74(1): 105-107.
    Sander D. The Correlation between Mechanical Stress and Magnetic Anisotropy in Ultrathin Films [J]. Rep Prog Phys, 1999, 62(5): 809-858.
    Han D H, Zhu J G, Judy J H, et al. Stress Effects on Exchange Coupling Field, Coercivity, and Uniaxial Anisotropy Field of NiO/NiFe Bilayer Thin Film for Spin Valves [J]. J Appl Phys, 1997, 81(8): 4519-4521.
    Han D H, Zhu J G, Judy J H, et al. Effect of Stress on Exchange Coupling Field, Coercivity, and Uniaxial Anisotropy Field of NiFe/NiO Bilayer Thin Films [J]. Appl Phys Lett, 1997, 70(5): 664-666.
    Rong J H, Yun G H, Narsu B, et al. Ferromagnetic Resonance and Stress Anisotropy in a Ferromagnetic/Antiferromagnetic Bilayer [J]. J Appl Phys, 2006, 100(8): 083901(1)-083901(6).
    Pang J, Tao Y C, Zhou L, et al. The Exchange Anisotropy in Ferromagnetic/Antiferromagnetic Bilayers under the Strain Field [J]. Jpn J Appl Phys, 2007, 46(10A): 6613-6617.
    Rong J H, Yun G H. Effect of Stress Anisotropy on Properties of Ferromagnetic and Antiferromagnetic Bilayer Films [J]. Chinese Journal of High Pressure Physics, 2006, 20(3): 265-269. (in Chinese)
    荣建红, 云国宏. 应力各向异性对铁磁/反铁磁双层薄膜磁性质的影响 [J]. 高压物理学报, 2006, 20(3): 265-269.
    Stoner E C, Wohlfarth E P. A Mechanism of Magnetic Hysteresis in Heterogeneous Alloys [J]. IEEE Trans Magn, 1991, 27(4): 3475-3518.
    Xi H W, White R M. Angular Dependence of Exchange Anisotropy in Ni81Fe19/CrMnPtx Bilayers [J]. J Appl Phys, 1999, 86(9): 5169-5174.
    Camarero J, Sort J, Hoffmann A, et al. Origin of the Asymmetric Magnetization Reversal Behavior in Exchange-Biased Systems: Competing Anisotropies [J]. Phys Rev Lett, 2005, 95(5): 057204(1)-057204(4).
    Kim D Y, Kim C G, Kim C O, et al. Angular Dependence of Exchange Bias and Coercivity in Polycrystalline CoFe/MnIr Bilayers [J]. J Magn Magn Mater, 2006, 304(1): e56-e58.
    Chung S H, Hoffmann A, Grimsditch M. Interplay between Exchange Bias and Uniaxial Anisotropy in a Ferromagnetic/Antiferromagnetic Exchange-Coupled System [J]. Phys Rev B, 2005, 71(21): 214430(1)-214430(10).
    Spenato D, Castel V, Pogossian S P, et al. Asymmetric Magnetization Reversal Behavior in Exchange-Biased NiFe/MnPt Bilayers in Two Different Anisotropy Regimes: Close and Far from Critical Thickness [J]. Appl Phys Lett, 2007, 91(6): 062515(1)-062515(3).
    Ambrose T, Sommer R L, Chien C L. Angular Dependence of Exchange Coupling in Ferromagnet/Antiferromagnet Bilayers [J]. Phys Rev B, 1997, 56(1): 83-86.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(7963) PDF downloads(708) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return