Volume 22 Issue 3
Apr 2015
Turn off MathJax
Article Contents
LIU Xiao-Mei, LIANG Yong-Cheng, SONG Qiu-Hong. Mechanical Properties of Transition-Metal Osmium under High Pressure[J]. Chinese Journal of High Pressure Physics, 2008, 22(3): 253-258 . doi: 10.11858/gywlxb.2008.03.005
Citation: LIU Xiao-Mei, LIANG Yong-Cheng, SONG Qiu-Hong. Mechanical Properties of Transition-Metal Osmium under High Pressure[J]. Chinese Journal of High Pressure Physics, 2008, 22(3): 253-258 . doi: 10.11858/gywlxb.2008.03.005

Mechanical Properties of Transition-Metal Osmium under High Pressure

doi: 10.11858/gywlxb.2008.03.005
More Information
  • Corresponding author: LIANG Yong-Cheng
  • Received Date: 10 Oct 2007
  • Rev Recd Date: 09 Jan 2008
  • Publish Date: 05 Sep 2008
  • The equation of states, elastic constants and other mechanical properties of transition-metal osmium under high-pressure are studied by the first-principles plane-wave pseudopotential calculations based on the density functional theory (DFT). The calculated results indicate that osmium has high bulk modulus B0 (423.9 GPa) and large elastic constants C11 (771.3 GPa) and C33 (852.0 GPa) comparable to diamond (B0=452.8 GPa, C11=C33=1 082.9 GPa), so it is an ultralow-compressible material. However, its elastic constant C44 (269.8 GPa) and shear modulus G (276.8 GPa), which indirectly measure hardness, are half of those of diamond (C44=586.9 GPa, G=537.5 GPa). Because of its pure metallic bonds, it may not be superhard material. The microscopic mechanism of high bulk modulus and low hardness can be understood from the analysis for electronic structures, and it helps to design and synthesize new superhard material.

     

  • loading
  • Cynn H, Klepeis J E, Yoo C S, et al. Osmium Has the Lowest Experimentally Determined Compressibility [J]. Phys Rev Lett, 2002, 88: 135701.
    Occelli F, Farber D L, Badro J, et al. Experimental Evidence for a High-Pressure Isostructural Phase Transition in Osmium [J]. Phys Rev Lett, 2004, 93: 095502.
    Kenichi T. Bulk Modulus of Osmium: High-Pressure Powder X-Ray Diffraction Experiments under Quasihydrostatic Conditions [J]. Phys Rev B, 2004, 70: 012101.
    Liang Y C, Fang Z. First-Principles Study of Osmium under High-Pressure [J]. J Phys: Condens Matter, 2006, 18: 8749-8759.
    Joshi K D, Jyoti G, Gupta S C. On Compressibility of Osmium Metal [J]. High Pressure Res, 2003, 23(4): 403-408.
    Fast L, Wills J M, Johansson B, et al. Elastic Constants of Hexagonal Transition Metals: Theory [J]. Phys Rev B, 1995, 51: 17431.
    Hebbache M, Zemzemi M. Ab Initio Study of High-Pressure Behavior of a Low Compressibility Metal and a Hard Material: Osmium and Diamond [J]. Phys Rev B, 2004, 70: 224107.
    Ma Y M, Cui T, Zhang L J, et al. Electronic and Crystal Structures of Osmium under High Pressure [J]. Phys Rev B, 2005, 72: 174103.
    Sahu B R, Kleinman L. Osmium Is Not Harder than Diamond [J]. Phys Rev B, 2005, 72: 113106.
    Koudela D, Richter M, Mobius A, et al. Lifshitz Transitions and Elastic Properties of Osmium under Pressure [J]. Phys Rev B, 2006, 74: 214103.
    Chung H Y, Weinberger M B, Levine J B, et al. Synthesis of Ultra-Incompressible Superhard Rhenium Diboride at Ambient Pressure [J]. Science, 2007, 316: 436-439.
    Cumberland R W, Weinberger M B, Gilman J J, et al. Osmium Diboride, an Ultra-Incompressible, Hard Material [J]. J Am Chem Soc, 2005, 127: 7264-7265.
    Gou H Y, Hou L, Zhang J W, et al. First-Principles Study of Low Compressibility Osmium Borides [J]. Appl Phys Lett, 2006, 88: 221904.
    Liang Y C, Guo W L, Fang Z. First-Principles Studies of Low-Compressibility of Transition-Metal Compounds OsB2 and OsO2 [J]. Acta Phys Sin, 2007, 56(8): 4847-4855. (in Chinese)
    梁拥成, 郭万林, 方 忠. 过渡金属化合物OsB2与OsO2低压缩性的第一性原理计算研究 [J]. 物理学报, 2007, 56(8): 4847-4855.
    Fang Z, Terakura K. Structural Distortion and Magnetism in Transition Metal Oxides: Crucial Roles of Orbital Degrees of Freedom [J]. J Phys: Condens Matter, 2002, 14: 3001-3014.
    Vanderbilt D. Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism [J]. Phys Rev B, 1990, 41: 7892.
    Perdew J P, Wang Y. Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy [J]. Phys Rev B, 1992, 45: 13244.
    Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple [J]. Phys Rev Lett, 1996, 77: 3865.
    Perdew J P, Burke K, Wang Y. Generalized Gradient Approximation for the Exchange-Correlation Hole of a Many-Electron System [J]. Phys Rev B, 1996, 54: 16533.
    Monkhorst H J, Pack J D. Special Points for Brillouin-Zone Integrations [J]. Phys Rev B, 1976, 13: 5188.
    Chen Z Y, Xiang H J, Yang J L, et al. Structural and Electronic Properties of OsB2: A Hard Metallic Material [J]. Phys Rev B, 2006, 74: 012102.
    Birch F. Finite Strain Isotherm and Velocities for Single-Crystal and Polycrystalline NaCl at High Pressures and 300 K [J]. J Geophys Res, 1978, 83: 1257-1268.
    Occelli F, Loubeyre P, Toullec R L. Properties of Diamond under Hydrostatic Pressures up to 140 GPa [J]. Nat Mater, 2003, 2: 151-154.
    Tse J S, Klug D D, Uehara K, et al. Elastic Properties of Potential Superhard Phases of RuO2 [J]. Phys Rev B, 2000, 61: 10029.
    Zheng J C. Superhard Hexagonal Transition Metal and Its Carbide and Nitride: Os, OsC and OsN [J]. Phys Rev B, 2005, 72: 052105.
    Neumanm G S, Stixrude L, Cohen R E. Absence of Lattice Strain Anomalies at the Electronic Topological Transition in Zinc at High Pressure [J]. Phys Rev B, 2001, 63: 054103.
    Hill R. The Elastic Behavior of a Crystalline Aggregate [J]. Proc Phys Soc London, 1953, 65: 349-354.
    Grossman J C, Mizel A, Cote M, et al. Transition Metals and Their Carbides and Nitrides Trends in Electronic and Structural Properties [J]. Phys Rev B, 1999, 60: 6343.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(7624) PDF downloads(801) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return