Volume 22 Issue 3
Apr 2015
Turn off MathJax
Article Contents
HUANG Xiao-Ge, BAI Wu-Ming, ZHOU Wen-Ge. Experimental Study on Electrical Conductivity of Biotite- and Plagioclase-Bearing Gneiss at High Temperature and High Pressure[J]. Chinese Journal of High Pressure Physics, 2008, 22(3): 237-244 . doi: 10.11858/gywlxb.2008.03.003
Citation: HUANG Xiao-Ge, BAI Wu-Ming, ZHOU Wen-Ge. Experimental Study on Electrical Conductivity of Biotite- and Plagioclase-Bearing Gneiss at High Temperature and High Pressure[J]. Chinese Journal of High Pressure Physics, 2008, 22(3): 237-244 . doi: 10.11858/gywlxb.2008.03.003

Experimental Study on Electrical Conductivity of Biotite- and Plagioclase-Bearing Gneiss at High Temperature and High Pressure

doi: 10.11858/gywlxb.2008.03.003
More Information
  • Corresponding author: HUANG Xiao-Ge
  • Received Date: 09 Jun 2007
  • Rev Recd Date: 29 Aug 2007
  • Publish Date: 05 Sep 2008
  • We have investigated the electrical properties of rock sample from Yinshan orogenic zone by in situ complex impedance spectroscopy using a multianvil apparatus. The electrical conductivity was measured at pressure of 1 GPa and temperature from 250 ℃ to 1 100 ℃ at frequencies from 0.1 Hz to 1 MHz. The data of resistance were obtained by using an equivalent circuit fitting technique. From these measurements we determined the electrical conductivity of the Archean metamorphic biotite- and plagioclase-bearing gneiss. The experimental results indicate that (1) each spectrum consists of an almost semicircular high-frequency arc Ⅰand a depressed high-frequency arc Ⅱ.The impedance spectrum Ⅰ is dominated by grain-interior response; the impedance spectrum Ⅱ is dominated by the sample-electrode interface impedance. (2) Electrical conductivity displays Arrhenian behavior respectively over investigated temperature range from 250 ℃ to 700 ℃ and from 750 ℃ to 1 100 ℃. However, it rapidly increases from 700 ℃ to 750 ℃. This jump is due to dehydration-melting of biotite within sample based on the comparative analysis of SEM photoes and electron probe data for pre-run and post-run samples. (3) Over higher temperature range (750~1 100 ℃), sodium is the dominating charge carrier in partially molten samples. (4) The activation energy of biotite- and plagioclase-bearing gneiss is 0.53 eV over range of temperature from 250 ℃ to 700 ℃. However, the activation energy of partially molten sample is 1.41 eV over range of temperature from 750 ℃ to 1 100 ℃. This change of activation energy has relations with sodium content and mobility in melt. It is possibly due to the change of structure between mineral and melt within samples.

     

  • loading
  • Gaillard F. Laboratory Measurements of Electrical Conductivity of Hydrous and Dry Silicic Melts under Pressure [J]. Earth and Planetary Science Letters, 2004, 218(1/2): 215-228.
    Duba A. Electrical Conductivity of Olivine [J]. J Geophys Res, 1972, 77(14): 2483-2494.
    Haak V. A Comparison of the Electrical Conductivity of Natural Mono and Polycrystalline Olivines-A Case to Decide [A]//Schreyer W. High-Pressure Researches in Geoscience [C]. Stuttgart: E Schweizerbart'sche Verlagsbuchhandlung, 1982: 407-417.
    Constable S, Duba A. Electrical Conductivity of Olivine, a Dunite, and the Mantle [J]. J Geophys Res, 1990, 95(B5): 6967-6978.
    Tyburczy J A, Roberts J J. Low Frequency Electrical Response of Polycrystalline Olivine Compacts: Grain Boundary Transport [J]. J Geophys Res, 1990, 17(11): 1985-1988.
    Roberts J J, Tyburczy J A. Frequency Dependent Electrical Properties of Polycrystalline Olivine Compacts [J]. J Geophys Res, 1991, 96(B10): 16205-16222.
    Liu J L, Bai W M, Kong X R. Research on Electrical Properties of Rock at High Pressure and Temperature [J]. Acta Seismologica Sinica, 1999, 21(1): 89-97. (in Chinese)
    柳江琳, 白武明, 孔祥儒. 高温高压下岩石的电性研究 [J]. 地震学报, 1999, 21(1): 89-97.
    Fuji-ta K, Katsura T, Tainosho Y. Electrical Conductivity Measurement of Granulite under Mid-to Lower Crustal Pressure-Temperature Conditions [J]. Geophys J Int, 2004, 157(1): 79-86.
    Sato H, Ida Y. Low Frequency Electrical Impedance of Partially Molten Gabbro: The Effect of Melt Geometry on Electrical Properties [J]. Tectonophysics, 1984, 107(1/2): 105-134.
    Roberts J J, Tyburczy J A. Partial-Melt Electrical Conductivity: Influence of Melt Composition [J]. J Geophys Res, 1999, 104(B4): 7055-7065.
    Partzsch G M, Schilling F R, Arndt J. The Influence of Partial Melting on the Electrical Behavior of Crustal Rocks: Laboratory Examinations, Model Calculations and Geological Interpretations [J]. Tectonophysics, 2000, 317( 3-4 ): 189-203.
    Gardien V, Thompson A B, Grujic D, et al. Experimental Melting of Biotite+Plagioclase+QuartzMuscovite Assemblages and Implications for Crustal Melting [J]. J Geophy Res, 1995, 100(B8): 15581-15591.
    Wu Z X, Deng J F, Wyllie P J, et al. Dehydration-Melting Experiment of the Biotite-Gneiss, Eastern Hebei, at 1 GPa Pressure [J]. Scientia Geologica Sinica, 1995, 30(1): 12-17. (in Chinese)
    吴宗絮, 邓晋福, Wyllie P J, 等. 冀东黑云母片麻岩在1 GPa压力下脱水熔融实验 [J]. 地质科学, 1995, 30(1): 12-17.
    Yang X S, Jin Z M, Huenges E, et al. Experimental Study on Dehydration Melting of Natural Biotite-Plagioclasegneiss from Himalayas and Implications for Himalayan Crust Anatexis [J]. Chinese Science Bulletin, 2001, 46(10): 867-872. (in Chinese)
    杨晓松, 金振民, Huenges E, 等. 高喜马拉雅黑云斜长片麻岩脱水熔融实验: 对青藏高原地壳深熔的启示 [J]. 科学通报, 2001, 46(3): 246-250.
    Fuji-ta K, Katsura T, Matsuzaki T, et al. Electrical Conductivity Measurement of Gneiss under Mid-to Lower Crustal p-T Conditions [J]. Tectonophysics, 2007, 434(1): 93-101.
    Macdonald J R. Impedance Spectroscopy, Emphasizing Solid Materials and Systems [M]. New York: John Wiley & Sons, 1987: 1-26.
    Huebner S J, Dillenaurg G D. Impedance Spectra of Dry Silicate Minerals and Rock: Qualitative Interpretation of Spectra [J]. Am Miner, 1995, 80(1-2): 46-64.
    Bai L P, Du J G, Liu W, et al. The Experimental Studies on Electrical Conductivities and P-Wave Velocities of Anorthosite at High Pressure and High Temperature [J]. Acta Seismologica Sinica, 2002, 24(6): 638-646. (in Chinese)
    白利平, 杜建国, 刘巍, 等. 高温高压下斜长岩纵波速度与电导率实验研究 [J]. 地震学报, 2002, 24(6): 638-646.
    Roberts J J, Tyburczy J A. Frequency Dependent Electrical Properties of Dunite as Function of Temperature and Oxygen Fugacity [J]. Phys Chem Minerals, 1993, 19(8): 545-561.
    Skjerlie K, Johnston A D. Fluid-Absent Melting Behavior of an F-Rich Tonalitic Gneiss at Mid-crustal Pressures: Implication for the Generation of Anorogenic Granites [J]. J Petrology, 1993, 34(4): 785-815.
    Patino Douce A E, Johnston A D. Phase Equilibria and Melt Productivity in the Politic System: Implications for the Origin of Peraluminous Granitoids and Aluminous Granulites [J]. Contrib Miner Petrol, 1991, 107(2): 202-218.
    Waff H S. Theoretical Considerations of Electrical Conductivity in a Partially Molten Mantle and Implications for Geothermometry [J]. J Geophys Res, 1974, 79(26): 4003-4010.
    Waff H S, Weill D F. Electrical Conductivity of Magmatic Liquids: Effects of Temperature, Oxygen Fugacity and Composition [J]. Earth Planet Sci Lett, 1975, 28(2): 254-260.
    Rai C S, Manghnani M H. Electrical Conductivity of Basalts to 1550 ℃ [A]//Dick H J B. Magma Genesis [C]. Portland: Bull 96 Oregon Dept Geol Miner Ind, 1977: 219-237.
    Rai C S, Manghnani M H. Electrical Conductivity of Ultramafic Rocks to 1820 Kelvin [J]. Phys Earth Planet Inter, 1978, 17(1): 6-13.
    Behrens H. Na and Ca Tracer Diffusion in Plagioclase Glasses and Supercooled Melts [J]. Chem Geol, 1992, 96(3-4): 267-275.
    Henderson P, Nolan J, Cunningham G C, et al. Structural Controls and Mechanisms of Diffusion in Natural Silicate Melts [J]. Contrib Miner Petrol, 1985, 89(2/3): 263-272.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(7511) PDF downloads(762) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return