Volume 21 Issue 1
Apr 2015
Turn off MathJax
Article Contents
DENG Xiao-Liang, ZHU Wen-Jun, HE Hong-Liang, WU Deng-Xue, JING Fu-Qian. Plasticity Mechanism Associated with Nano-Void Growth under Impact Loading along 〈111〉 Direction in Copper[J]. Chinese Journal of High Pressure Physics, 2007, 21(1): 59-65 . doi: 10.11858/gywlxb.2007.01.010
Citation: DENG Xiao-Liang, ZHU Wen-Jun, HE Hong-Liang, WU Deng-Xue, JING Fu-Qian. Plasticity Mechanism Associated with Nano-Void Growth under Impact Loading along 〈111〉 Direction in Copper[J]. Chinese Journal of High Pressure Physics, 2007, 21(1): 59-65 . doi: 10.11858/gywlxb.2007.01.010

Plasticity Mechanism Associated with Nano-Void Growth under Impact Loading along 〈111〉 Direction in Copper

doi: 10.11858/gywlxb.2007.01.010
More Information
  • Corresponding author: ZHU Wen-Jun
  • Received Date: 15 Nov 2005
  • Rev Recd Date: 26 Feb 2006
  • Publish Date: 05 Mar 2007
  • Evolution of Nano-void (diameter d1.3 nm) in single crystal copper and associated plasticity deformation around the nano-void under impact loading are investigated by means of molecular dynamics (MD) simulation. The results of simulation reveal that in the tensile process there are three of all four {111} family planes to be activated to glide, dislocations are nucleated in the region near the void surface and then move outside on three {111} family planes as the void grows. The velocity of dislocation along 〈112〉 directions with the maximum resolve shear stress can exceed transverse sound velocity. The calculated dislocation damping constant is appropriately consistent with the experiment results. Due to the approximately symmetrical plastic deformation around the void, the shape of the void during growth process is almost spherical. The growth rate of the void radius is observed to be constant under constant shock strength, and the amplitude increases as well as the shock strength increases.

     

  • loading
  • Seaman L, Curran D R, Shockey D A. Computational Models for Ductile and Brittle Fracture [J]. J Appl Phys, 1976, 47(11): 4814-4826.
    Carroll M M, Holt A C. Static and Dynamic Pore-Collapse Relations for Ductile Porous Materials [J]. J Appl Phys, 1972, 43: 1626-1636.
    Zhou S J, Beazley D M, Lomdahl P S, et al. Large-Scale Molecular Dynamics Simulations of Three-Dimensional Ductile Failure [J]. Phys Rev Lett, 1996, 78: 479-482.
    Seppala E T, Belak J, Rudd R E. Onset of Void Coalescence during Dynamic Fracture of Ductile Metals [J]. Phys Rev Lett, 2005, 93: 245503.
    Holian B L, Lomdahl P S. Plasticity Induced by Shock Waves in Nonequilibrium Molecular-Dynamics Simulations [J]. Science, 1998, 280: 2085-2088.
    Yamakov V, Saether E, Philips D R, et al. Dynamic Instability in Intergranular Fracture [J]. Phys Rev Lett, 2005, 95: 015502.
    Davila L P, Erhart P, Bringa E M, et al. Atomistic Modeling of Shock-Induced Void Collapse in Copper [J]. Appl Phys Lett, 2005, 86: 161902.
    Lubarda V A, Schneider M S, Kalantar D H, et al. Void Growth by Dislocation Emission [J]. Acta Mater, 2004, 52: 1397-1408.
    Marian J, Knap J, Ortiz M. Nanovoid Cavitation by Dislocation Emission in Aluminum [J]. Phys Rev Lett, 2004, 93: 165503.
    Rauf G M, Maroudas D. Atomistic Mechanism of Strain Relaxation due to Ductile Void Growth in Ultrathin Films of Face-Centered-Cubic Metals [J]. J Appl Phys, 2005, 97: 113527.
    Luo J, Zhu W J, Lin L B, et al. Molecular Dynamics Simulation of Void Growth in Single Crystal Copper under Uniaxial Impacting [J]. Acta Phys Sin, 2005, 54: 2791-2798. (in Chinese)
    罗晋, 祝文军, 林理彬, 等. 单晶铜在动态加载下空洞增长的分子动力学研究 [J]. 物理学报, 2005, 54: 2791-2798.
    Mishin Y, Mehl M J, Papaconstantopoulos D A, et al. Structural Stability and Lattice Defects in Copper: Ab Initio, Tight-Binding, and Embedded-Atom Calculations [J]. Phys Rev B, 2001, 63: 224106.
    Bringa E M, Cazamias J U, Erhart P, et al. Atomistic Shock Hugoniot Simulation of Single-Crystal Copper [J]. J Appl Phys, 2004, 96: 3793-3798.
    Wan F R. Radiation Damage of Metals [M]. Beijing: Science Press, 1993: 101-102. (in Chinese)
    万发荣. 金属材料的辐照损伤 [M]. 北京: 科学出版社, 1993: 101-102.
    Curran D R, Seaman L. Dynamic Failure of Solids [J]. Physical Reports, 1987, 147: 253-388.
    Hoover W G. Computational Statistical Mechanics [M]. Netherlands Elsevier: Science Publishers B V, 1991: 140-145.
    Zhou S J, Preston D L, Lomdahl P S, et al. Large-Scale Molecular Dynamics Simulations of Dislocation Intersection in Copper [J]. Science, 1998, 279: 1525-1527.
    Hirth J P, Loyhe J. Theory of Dislocations [M]. New York: Wiley, 1982: 267-275.
    Gumbsch P, Gao H J. Dislocations Faster than the Speed of Sound [J]. Science, 1999, 283: 965-968.
    Jones O E, Mote J D. Shock-Induced Dynamic Yielding in Copper Single Crystals [J]. J Appl Phys, 1969, 40: 4920-4928.
    Mordehai D, Ashkenazy Y, Kelson I. Dynamic Properties of Screw Dislocations in Cu: A Molecular Dynamics Study [J]. Phys Rev B, 2003, 7: 024112.
    Clarke A S, Jonsson H. Structural Changes Accompanying Densification of Random Hard-Sphere Packings [J]. Phys Rev E, 1991, 47: 3975-3984.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(7444) PDF downloads(793) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return