Volume 21 Issue 1
Apr 2015
Turn off MathJax
Article Contents
YANG Jin-Ke, GONG Zi-Zheng, DENG Li-Wei, ZHANG Li, FEI Ying-Wei. Equation of State and Phase Transition of (Mg0.92, Fe0.08) SiO3 Enstatite under Shock Compression and Its Geophysical Implications[J]. Chinese Journal of High Pressure Physics, 2007, 21(1): 45-54 . doi: 10.11858/gywlxb.2007.01.008
Citation: YANG Jin-Ke, GONG Zi-Zheng, DENG Li-Wei, ZHANG Li, FEI Ying-Wei. Equation of State and Phase Transition of (Mg0.92, Fe0.08) SiO3 Enstatite under Shock Compression and Its Geophysical Implications[J]. Chinese Journal of High Pressure Physics, 2007, 21(1): 45-54 . doi: 10.11858/gywlxb.2007.01.008

Equation of State and Phase Transition of (Mg0.92, Fe0.08) SiO3 Enstatite under Shock Compression and Its Geophysical Implications

doi: 10.11858/gywlxb.2007.01.008
More Information
  • Corresponding author: GONG Zi-Zheng
  • Received Date: 12 Oct 2005
  • Rev Recd Date: 12 Jan 2006
  • Publish Date: 05 Mar 2007
  • We performed shock wave experiments on a natural pyroxene with chemical composition close to (Mg0.92, Fe0.08)SiO3 and initial density of 3.06 g/cm3 at pressures between 48 and 140 GPa, using impedance match method and electrical probe technique. Considering McQueen et. al. data, it is obvious that (Mg0.92, Fe0.08)SiO3 goes through three phase regions in the procedure of shock compression: Low-pressure phase region (LPR), mixed phase region (MPR), and high-pressure phase region (HPR), corresponding to the pressure 0~40 GPa, 40~67 GPa and 68~140 GPa, respectively. In low-pressure phase region, the relationship between shock wave velocity D and particle velocity u was expressed by McQueen et. al. data. Then in high-pressure phase region (at pressures between 68 to 140 GPa), it can be described linearly from our experiment data. The calculated D-u relationship for the assemblage of (Mg0.92, Fe0.08)O(Mw)+SiO2(St) is significantly different from the experimental data, excluding the possibility of chemical decomposition of perovskite to oxides during the shock compression. The Grneisen parameter can be obtained by fitting the experimental data. Using the third-order Birch-Murnaghan finite strain equation of state, the shock experimental data yield a zero-pressure bulk modulus K0S=259.6(9) GPa and its pressure derivative K0S=4.20(5), with 0=4.19 g/cm3. A comparison of the experimental Hugoniot densities of perovskite with the PREM density profile prefers a perovskite-dominant lower mantle model.

     

  • loading
  • Knittle E, Jeanloz R. Synthesis and Equation of State of (Mg, Fe)SiO3 Perovskite to over 100 Gigapascals [J]. Science, 1987, 235: 668-670.
    Mao H K, Hemley R J, Fei Y, et al. Effect of Pressure, Temperature, and Composition on Lattice Parameters and Density of (Fe, Mg)SiO3-Perovskites to 30 GPa [J]. J Geophys Res, 1991, 96: 8069-8079.
    Wang Y, Weidner D J, Liebermann R C, et al. p-V-T Equation of State of (Mg, Fe)SiO3 Perovskite: Constraints on Composition of the Lower Mantle [J]. Phys Earth Planet Inter, 1994, 83: 13-40.
    Funamori N, Yagi T, Utsumi W, et al. Thermoelastic Properties of MgSiO3 Perovskite Determined by in situ X-Ray Observations up to 30 GPa and 2000 K [J]. J Geophys Res, 1996, 101: 8257-8269.
    Fiquet G, Andrault D, Dewaele A, et al. p-V-T Equation of State of MgSiO3 Perovskite [J]. Phys Earth Planet Inter, 1998, 105: 21-31.
    Fiquet G, Dewaele A, Andrault D, et al. Thermolastic Properties and Crystal Structure of MgSiO3 Perovskite at Lower Mantle Pressure and Temperature Conditions [J]. Geophys Res Lett, 2000, 27(1): 21-24.
    Saxena S K, Dubrovinsky L S, Tutti F, et al. Equation of State of MgSiO3 with the Perovskite Structure Based on Experimental Measurement [J]. Am Mineral, 1999, 84: 226-232.
    Zhang J, Weidner D J. Thermal Equation of State of Aluminium-Enriched Silicate Perovskite [J]. Science, 1999, 284: 782-784.
    Andrault D, Bolfan-Casanova N, Guignot N. Equation of State of Lower Mantle (Al, Fe)-MgSiO3 Perovskite [J]. Earth Planet Sci Lett, 2001, 193: 501-508.
    Meade C, Mao H K, Hu J Z. High-Temperature Phase Transition and Dissociation of (Mg, Fe)SiO3 Perovskite at Lower Mantle Pressure [J]. Science, 1995, 268: 1743-1745.
    Saxena S K, Dubrovinsky L S, Lazor P, et al. Stability of Perovskite MgSiO3 in the Earth's Mantle [J]. Science, 1996, 274: 1357-1359.
    Serghiou G, Zerr A, Boehler R. (Mg, Fe)SiO3-Perovskite Stability under Lower Mantle Conditions [J]. Science, 1998, 280: 2093-2095.
    Shim S H, Duffy T J, Shen G Y. Stability and Structure of MgSiO3 Perovskite to 2300-Kilometer Depth in the Earth's Mantle [J]. Science, 2001, 293: 2437-2440.
    Trunin R F, Gon'shakova V I, Simakov G V, et al. A Study of Rock under the High Pressures and Temperatures Created by Shock Compression [J]. Izv Acad Sci USSR Phys Solid Earth, Engl Trans, 1965, 8: 579-586.
    McQueen R G, Marsh S P, Fritz J N. Hugoniot Equation of State of Twelve Rocks [J]. J Geophys Res, 1967, 72(20), 4999-5036.
    Simakov G V, Trunin R F. On the Existance of the Overdense Perovskite Structures in Magnesium Silicates under Conditions of High Pressure [J]. Izv Acad Sci USSR Phys Solid Earth, Engl Trans, 1973, 9: 603-604.
    Jeanloz R, Ahrens T J. Pyroxenes and Olivines: Structural Implications of Shock Wave Data for High-Pressure Phases [A]//Manghnani M H, Akimoto S. High-Pressure Research: Applications in Geophysics [C]. Washington D C: American Geophysical Union, 1977: 439-461.
    Watt J P, Ahrens T J. Shock Wave Equation of State of Enstatite [J]. J Geophys Res, 1986, 91(B7): 7495-7503.
    Huo H, Gong Z Zh, Jing F Q. High Pressure Phase of Enstatite and Its Geophysical Implication [J]. Chinese Journal of High Pressure Physics, 1999, 12(2): 132-138. (in Chinese)
    霍卉, 龚自正, 经福谦. 高压下顽火辉石的相态及其在地球物理中的应用 [J]. 高压物理学报, 1999, 12 (2): 132-138.
    Jing F Q. Introduction to Experiment Equation of State (2nd ed) [M]. Beijing: Science Press, 1999: 328-340. (in Chinese)
    经福谦. 实验物态方程导引 (第2版) [M]. 北京: 科学出版社, 1999: 328-340.
    Mitchell A C, Nellis W J. Shock Compression of Aluminum, Copper, and Tantalum [J]. J Appl Phys, 1981, 52: 3363-3374.
    Miller G H, Stolper E M, Ahrens T J. Equation of State of a Molten Komatiite: 1. Shock Wave Compression to 36 GPa [J]. J Geophys Res, 1991, 96(B7): 11, 831-11, 848.
    Akins J A, Luo S-N, Asimow P D, et al. , Shock-Induced Melting of MgSiO3 Perovskite and Implications for Melts in Earth's Lowermost Mantle [J]. Geophys Res Lett, 2004, 31: L14612.
    Luo S N, Mosenfelder J L, Asimov P D, et al. Direct Shock Wave Loading of Stishovite to 235 GPa: Implications for Perovskite Stability Relative to an Oxide Assemblage at Lower Mantle Conditions [J]. Geophys Res Lett, 2002, 29(14): 1691-1694.
    McQueen R G. Shock Waves in Condensed Media: Their Properties and the Equation of State of Materials Derived from Them [A]//Eliezer S, Ricci R A. High-Pressure Equations of State: Theory and Applications [C]. Amsterdam: Elsevier Science Publishing Company, 1991: 101-216.
    Fei Y. Effects of Temperature and Composition on the Bulk Modulus of (Mg, Fe)O [J]. Am Mineral, 1999, 84: 272-276.
    Gong Z Zh, Xie H S, Jing F Q, et al. High-Pressure Sound Velocity of Perovskite-Enstatite and Possible Composition of Earth's Lower Mantle [J]. Chin Phys Lett, 1999, 16(9): 695-697.
    Badro J, Rueff J P, Vanko G. Electronic Transitions in Perovskite: Possible Noconvecting Layers in the Lower Mantle [J], Science, 2004, 305: 383-386.
    Anderson O L. Thermoelastic Properties of MgSiO3 Perovskite Using Debye Approach [J]. Am Mineral, 1998, 83: 23-35.
    Anderson O L, Masuda K, Isaak D G. Limits on the Value of T and for MgSiO3 Perovskite [J]. Phys Earth Planet Inter, 1996, 98: 31-46.
    Marton F C, Ita J, Cohen R E. Pressure-Volue-Temperature Equation of State of MgSiO3 Perovskite from Molecular Dynamics and Constraints on Lower Mantle Composition [J]. J Geophys Res, 2001, 106(B5): 8615-8627.
    Heinz D L, Jeanloz R. The Equation of State of the Gold Calibration Standard [J]. J Appl Phys, 1984, 55: 885-893.
    Ahrens T J, Jeanloz R. Pyrite: Shock Compression, Isentropic Release, and Composition of the Earth's Core [J]. J Geophys Res, 1987, 92(B10): 10363-10375.
    Jeanloz R. Shock Wave Equation of State and Finite Strain Theory [J]. J Geophys Res, 1989, 94(B5): 5873-5886.
    Tyburczy, J A, Duffy T S, Ahrens T J, et al. Shock Wave Equation of State of Serpentine to 150 GPa: Implications for the Occurrence of Water in the Earth's Lower Mantle [J]. J Geophys Res, 1991, 96(B11): 18011-18027.
    Debye P. Zur Theories Der Spezifischen Warmen [J]. Ann Phys, 1912, 39: 789-839.
    Gruneisen E. The State of a Solid Body [J]. Hanb Phys, 1926, 10: 1-52.
    Anderson O L. Equations of States of Solids for Geophysics and Ceramic Science [M]. New York: Oxford University Press, 1995.
    Stacey F D. A Thermal Model of the Earth [J]. Phys Earth Planet Inter, 1977, 15: 341-348.
    Brown J M, Shankland T J. Thermodynamic Parameters in the Earth as Determined from Seismic Profiles [J]. Geophys J R Astron Soc, 1981, 66: 579-596.
    Jeanloz R, Morris S. Temperature Distribution in the Crust and Mantle [J]. Ann Rev Erath Planet Sci, 1986, 14: 377-415.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(7950) PDF downloads(846) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return