Volume 21 Issue 1
Apr 2015
Turn off MathJax
Article Contents
HE Hong-Liang. Cubic Silicon Nitride and Its Synthesis by Shock Wave Compression[J]. Chinese Journal of High Pressure Physics, 2007, 21(1): 1-7 . doi: 10.11858/gywlxb.2007.01.001
Citation: HE Hong-Liang. Cubic Silicon Nitride and Its Synthesis by Shock Wave Compression[J]. Chinese Journal of High Pressure Physics, 2007, 21(1): 1-7 . doi: 10.11858/gywlxb.2007.01.001

Cubic Silicon Nitride and Its Synthesis by Shock Wave Compression

doi: 10.11858/gywlxb.2007.01.001
More Information
  • Corresponding author: HE Hong-Liang
  • Received Date: 11 Jul 2006
  • Rev Recd Date: 03 Jan 2007
  • Publish Date: 05 Mar 2007
  • Cubic silicon nitride is a new polymorphous of Si3N4 synthesized under high pressure and high temperature. Compared to the two known hexagonal phases of and , the new phase is about 26% denser in density, and it is predicted to be a new multi-functional ceramic. The achievement and related concern of the cubic silicon nitride have been reviewed in this paper, including the progress in artificial synthesis, the study on its physical property, the synthesis of other Ⅳ(A) group denser nitrides (Ge3N4, Sn3N4, C3N4), and the explore of the possible post-spinel phase of nitride. By using a flyer impact technique with explosive detonation, we recently have synthesized the cubic silicon nitride from the precursor of -Si3N4, and the mass production of the cubic phase has reached about 2 grams in each run of the shock wave compression test, which provides an economic way for further investigation of its potential performance in industriy.

     

  • loading
  • Zerr A, Miehe G, Serghious G, et al. Synthesis of Cubic Silicon Nitride [J]. Nature (London), 1999, 400: 340-342.
    Brook R J. Superhard Ceramics [J]. Nature (London), 1999, 400: 312-315.
    Mo S-D, Ouyang L, Ching W Y, et al. Interesting Properties of New Spinel Phase of Si3N4 and C3N4 [J]. Phys Rev Lett, 1999, 83: 5046-5049.
    Sekine T, He H L, Kobayashi T, et al. Shock-Induced Transformation of -Si3N4 to a High-Pressure Cubic-Spinel Phase [J]. Appl Phys Lett, 2000, 76: 3706-3708.
    Jiang J Z, Stahl K, Berg R W, et al. Structural Characterization of Cubic Silicon Nitride [J]. Europhys Lett, 2000, 51: 62-67.
    Schwarz M, Miehe G, Zerr A, et al. Spinel-Si3N4: Multi-Anvil Press Synthesis and Structural Refinement [J]. Advanced Mater, 2000, 12: 883-887.
    McMillan P F. New Materials from High-Pressure Experiments [J]. Nature materials, 2002, 1: 19-25.
    Sekine T, Mitsuhashi T. High-Temperature Metastability of Cubic Spinel Si3N4 [J]. Appl Phys Lett, 2001, 79: 2719-2721.
    Jiang J Z, Kragh F, Frost D J, et al. Hardness and Thermal Stability of Cubic Silicon Nitride[J]. J Phys: Condens Matter, 2001, 13: L515-L520.
    Jiang J Z, Lindelov H, Gerward L, et al. Compressibility and Thermal Expansion of Cubic Silicon Nitride [J]. Phys Rev B, 2002, 65: 161202(1)-161202(4).
    Hintzen H T, Hendrix M R M M, Wondergem H, et al. Thermal Expansion of Cubic Si3N4 with the Spinel Structure [J]. J Alloys Compounds, 2003, 351: 40-42.
    He H L, Sekine T, Kobayashi T, et al. Shock-Induced Phase Transition of -Si3N4 to c-Si3N4 [J]. Phys Rev B, 2000, 62(17): 11412-11417.
    Kiefer B, Shieh S R, Duffy T S, et al. Strength, Elasticity, and Equation of State of the Nanocrystalline Cubic Silicon Nitride -Si3N4 to 68 GPa [J]. Phys Rev B, 2005, 72(1): 014102(1)-014102(9).
    Zerr A, Kempf M, Schwarz M, et al. Elastic Moduli and Hardness of Cubic Silicon Nitride [J]. J Am Ceram Soc, 2002, 85: 86-90.
    Mori-Snchez P, Marqus M, Beltrn A, et al. Origin of the Low Compressibility in Hard Nitride Spinels [J]. Phys Rev B, 2003, 68(6): 064115(1)-064115(5).
    He J L, Guo L C, Yu D L, et al. Hardness of cubic Spinel Si3N4 [J]. Appl Phys Lett, 2004, 85(23): 5571-5573.
    Dong J J, Deslippe J, Sankey O F, et al. Theoretical Study of the Ternary Spinel Nitride System Si3N4-Ge3N4 [J]. Phys Rev B, 2003, 67(9): 094104(1)-094104(7).
    Tanaka I, Mizoguchi T, Sekine T, et al. Electron Energy Loss Near-Edge Structures of Cubic Si3N4 [J]. Appl Phys Lett, 2001, 78: 2134-2136.
    Sekine T, Tansho M, Kanzaki M. Si Magic-Angle-Spinning Nuclear-Magnetic-Resonance Study of Spinel-Type Si3N4 [J]. Appl Phys Lett, 2001, 78: 3050-3051.
    Fang C M, de Wijs G A, Hintzen H T, et al. Phonon Spectrum and Thermal Properties of Cubic Si3N4 from First-Principles Calculations [J]. J Appl Phys, 2003, 93: 5175-5180.
    Oba F, Tazuyoshi K, Adachi H, et al. n- and p-Type Dopants for Cubic Silicon Nitride [J]. Appl Phys Lett, 2001, 78: 1557-1579.
    Serghiou G, Miehe G, Tschauner O, et al. Synthesis of a Cubic Ge3N4 Phase at High Pressures and Temperatures [J]. J Chem Phys, 1999, 111: 4659-4662.
    Leinenweber K, O'Keeffe M, Somayazulu M, et al. Synthesis and Structure Refinement of the Spinel, -Ge3N4 [J]. Chem Eur J, 1999, 5: 3076-3080.
    He H L, Sekine T, Kobayashi T, et al. Phase Transformation of Germanium Nitride (Ge3N4) under Shock Wave [J]. J Appl Phys, 2001, 90: 4403-4406.
    Shemkunas M P, Wolf G H, Leinenweber K, et al. Rapid Synthesis of Crystalline Spinel Tin Nitride by a Solid-State Metathesis Reaction [J]. J Am Ceram Soc, 2002, 85: 101-104.
    Liu A Y, Cohen M L. Prediction of New Low Compressibility Solids [J]. Science, 1989, 245: 841-842.
    Teter D M, Hemley R J. Low-Compressibility Carbon Nitrides [J]. Science, 1996, 271: 53-55.
    Matsumoto S, Xie E-Q, Izumi F. On the Validity of the Formation of Crystalline Carbon Nitrides, C3N4 [J]. Diamond Relat Mater, 1999, 8: 1175-1182.
    Malkow T. Critical Observations in the Research of Carbon Nitride [J]. Mater Sci Eng, 2000, A292: 112-124.
    Ching W Y, Mo S-D, Tanaka I, et al. Prediction of Spinel Structure and Properties of Single and Double Nitrides [J]. Phys Rev B, 2001, 63: 064102(1)-064102(4).
    Sanchez P M, Marques M, Beltran A, et al. Origin of the Low Compressibility in Hard Nitride Spinels [J]. Phys Rev B, 2003, 68: 064115(1)-064115(5).
    Schnick W. The First Nitride Spinels-New Synthetic Approaches to Binary Group 14 Nitrides [J]. Angew Chem Int Ed, 1999, 38: 3309-3310.
    Fei Y, Frost D J, Mao H K, et al. In Situ Structure Determination of the High-Pressure Phase of Fe3O4 [J]. Am Miner, 1999, 84: 203-206.
    Shim S-H, Duffy T S, Shen G Y. The Post-Spinel Transformation in Mg2SiO4 and Its Relation to the 660 km Seismic Discontinuity [J]. Nature (London), 2001, 411: 571-574.
    Tatsumi K, Tanaka I, Adachi H, et al. Theoretical Prediction of Post-Spinel Phase of Silicon Nitride [J]. J Am Ceram Soc, 2002, 85: 7-10.
    Liu Y Sh, Yao H, Zhang F P, et al. Experiment Research on Shock Synthesis of Cubic Silicon Nitride [J]. Journal of Inorganic Materials, 2007, 22(1): 159-162. (in Chinese)
    刘雨生, 姚怀, 张福平, 等. 立方氮化硅的冲击波合成实验研究 [J]. 无机材料学报, 2007, 22(1): 159-162.
    DeCarli P S, Jamieson J C. Formation of Diamond by Explosive Shock [J]. Science, 1961, 133: 1821-1823.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(7582) PDF downloads(843) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return