Volume 20 Issue 2
Apr 2015
Turn off MathJax
Article Contents
WANG Yong-Gang, HE Hong-Liang, WANG Li-Li, JING Fu-Qian. Percolation Description for the Early Stage of Void Coalescence during Dynamic Tensile Fracture in Ductile Materials[J]. Chinese Journal of High Pressure Physics, 2006, 20(2): 127-132 . doi: 10.11858/gywlxb.2006.02.003
Citation: WANG Yong-Gang, HE Hong-Liang, WANG Li-Li, JING Fu-Qian. Percolation Description for the Early Stage of Void Coalescence during Dynamic Tensile Fracture in Ductile Materials[J]. Chinese Journal of High Pressure Physics, 2006, 20(2): 127-132 . doi: 10.11858/gywlxb.2006.02.003

Percolation Description for the Early Stage of Void Coalescence during Dynamic Tensile Fracture in Ductile Materials

doi: 10.11858/gywlxb.2006.02.003
More Information
  • Corresponding author: HE Hong-Liang
  • Received Date: 23 Mar 2005
  • Rev Recd Date: 30 Jun 2005
  • Publish Date: 05 Jun 2006
  • Based on the frame of percolation theory, a new stress release function named as Percolation Release (PR) function has been proposed to describe the course of stress release during the early stage of void coalescence until the final or catastrophic fracture occurring. A clearly physical meaning is given for Dc0, the critical damage for the initiation of void coalescence, and Df, the fracture critical damage. Coupled with damage function model proposed previously, PR function is applied to simulate the spall behaviors of OFHC copper and 45 steel as examples. Compared with the experimental measurements, numerical results indicate that the calculated stress profile and free surface velocity profile as well as the damage distribution in the materials being studied are consistent well with the experiments, and PR function has a good ability for describing the stress release just before the catastrophic fracture occurs.

     

  • loading
  • Davision L, Stevens A L. Continuum Measures of Spall Damage [J]. J Appl Phys, 1972, 43: 988-994.
    Seaman L, Curran D R, Shockey D A. Computational Models for Ductile and Brittle Fracture [J]. J Appl Phys, 1976, 47(11): 4814-4824.
    Curran D R, Seaman L, Shockey D A. Dynamic Failure of Solid [J]. Phys Rep, 1987, 147: 253-388.
    Cochran S, Banner D. Spall Studies in Uranium [J]. J Appl Phys, 1977, 48: 2729-2737.
    Carroll M M, Holt A C. Static and Dynamic Pore-Collapse Relations for Ductile Porous Materials [J]. J Appl Phys, 1972, 43: 1626-1635.
    Johnson J N. Dynamic Fracture and Spallation in Ductile Solids [J]. J Appl Phys, 1981, 52: 2812-2825.
    Johnson J N, Addessio F L. Tensile Plasticity and Ductile Fracture [J]. J Appl Phys, 1988, 64: 6699-6712.
    Perzyna P. Internal State Variable Description of Dynamic Fracture of Ductile Solids [J]. Int J Solids Struct, 1986, 22: 797-818.
    Bai Y L, Xia M F, Ke F J, et al. Statistical Microdamage Mechanics and Damage Field Evolution [J]. Theoretical and Applied Fracture Mechanics, 2001, 37: 1-10.
    Bai Y L, Bai J, Li H L. Damage Evolution, Localization and Failure of Solids Subjected to Impact Loading [J]. Int J Impact Eng, 2000, 24: 685-701.
    Feng J B. Damage-Level Function of the Dynamic Fracture in Ductile Metals [D]. Beijing: Beijing Uiversity of Technology, 1992. (in Chinese)
    封加波. 金属动态延性破坏的损伤度函数模型 [D]. 北京: 北京理工大学, 1992.
    Feng J B, Jing F Q, Zhang G R. Dynamic Ductile Fragmentation and the Damage Function Model [J]. J Appl Phys, 1997, 81: 2575-2578.
    Bai Y L, Xia M F, Ke F J, et al. Closed Trans-Scale Statistical Microdamage Mechanics [J]. Acta Mechanica Sinica, 2002, 18(1): 1-17.
    Xia M F, Ke F J, Bai Y L. Threshold Diversity and Trans-Scale Sensitivity in a Finite Nonlinear Evolution Model of Materials Failure [J]. Phys Lett A, 1997, 236: 60-64.
    Wang H Y, Bai Y L, Xia M F, et al. Spallation Analysis with a Closed Trans-Scale Formulation of Damage Evolution [J]. Acta Mechanica Sinica, 2004, 20(4): 400-407.
    Seppala E T, Belak J, Rudd R E. Onset of Void Coalescence during Dynamic Fracture of Ductile Metals [J]. Phys Rev Lett, 2004, 93: 245503.
    Stauffer D. Intrduction to the Percolation Theory [M]. London: Taylor and Francis, 1985.
    Strachan A, Cagin Tahir, Goddard W A Ⅲ. Critical Behavior in Spallation Failure of Metals [J]. Phys Rev B, 2001, 63: 060103-1-4.
    Zhang L, Zhang Z G, Qing X Y, et al. Dynamic Fracture and Mechanical Property of D6A, 921 and 45 Steels under Low Shock Pressure [J]. Chinese Journal of High Pressure Physics, 2003, 17(4): 305-310. (in Chinese)
    张林, 张祖根, 秦晓云, 等. D6A、921、和45钢的动态破坏与低压冲击特性 [J]. 高压物理学报, 2003, 17(4): 305-310.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(7417) PDF downloads(715) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return