Volume 19 Issue 3
Apr 2015
Turn off MathJax
Article Contents
LI Yin-Cheng. Behaviors of Initiation and after-Initiation for Homogeneous Explosives[J]. Chinese Journal of High Pressure Physics, 2005, 19(3): 247-256 . doi: 10.11858/gywlxb.2005.03.010
Citation: LI Yin-Cheng. Behaviors of Initiation and after-Initiation for Homogeneous Explosives[J]. Chinese Journal of High Pressure Physics, 2005, 19(3): 247-256 . doi: 10.11858/gywlxb.2005.03.010

Behaviors of Initiation and after-Initiation for Homogeneous Explosives

doi: 10.11858/gywlxb.2005.03.010
More Information
  • Corresponding author: LI Yin-Cheng
  • Received Date: 02 Jun 2004
  • Rev Recd Date: 12 Oct 2004
  • Publish Date: 05 Sep 2005
  • Campbell's experimental studies of behaviors of initiation and after-initiation for homogeneous explosives were introduced and analyzed, but initiation conditions were not dealt with. Campbell's experimental results showed that detonation originated at the gap-explosive interface some microseconds of induction time later after the shock entered the nitromethane (NM). In other words, detonation is initiated by shock not instantaneously but directly (namely, not to pass through other processes, such as deflagration). The experimental data were newly treated, then they showed obviously that after initiation of detonation in NM the net detonation velocity is less than the normal detonation velocity. The experimental values of induction time decrease from 3.06 s to 0.705 s if the efficient pressures of shock wave increase from 8.82 GPa to 12.14 GPa. The two-phase repulsive-translation (A, m) equation of state was used to describe states of detonation product, and formularies of estimating induction time were derived newly and strictly from the thermal initiation theory. The calculated values of induction time estimated by the new formularies decrease from 248 s to 0.99 s if the efficient pressures of shock wave change in the same region. The calculated values of induction time are markedly higher than the experimental values. Thus this indicates that the thermal initiation theory is not applicable to describe the behaviors of shock initiation of NM. The cause is that the explanation of behaviors of shock initiation for homogeneous explosives with the thermal initiation theory does not accord with microscopic motion image of substance. Therefore, the thermal initiation theory is not the applicable one to describe behaviors of shock initiation for homogeneous explosives.

     

  • loading
  • Chinese Encyclopedia Chemistry Industry [M]. Beijing: Chinese Encyclopedia Press, 1987. 91; 174. (in Chinese)
    中国大百科全书化工 [M]. 北京: 中国大百科全书出版社, 1987. 91; 174.
    Zeldovich Ya B, Kompaneets A S. The Theory on Detonation [M]. Translated by Xu H F. Beijing: Higher Education Press, 1958. 171; 183. (in Chinese)
    泽尔道维奇 Ya B, 康巴涅耶茨 A S. 爆震原理 [M]. 徐华舫译. 北京: 高等教育出版社, 1958. 171; 183.
    Karo A M, Mehlman M H, Hardy J R. The Dynamics of Shock-Induced Energy Flux in Molecular Bonds [A]. 8th Symposium on Detonation [C]. 1985. 864-869.
    Trevino S F, Tai D H. Simulation of the Initiation of Detonation in an Energetic Molecular Crystal [A]. 8th Symposium on Detonation [C]. 1985. 870-880.
    Cui J P, He Y Z. Proceedings of Chinese 4th Symposium on Detonation (Vol 2) [C]. Shanhaiguan, Hebei, China, 1994. 1-2. (in Chinese)
    崔季平, 何宇中. 晶格能量弛豫与激波作用下凝聚态分子的稳定性 [A]. 第四届全国爆轰学术会议论文集(下) [C]. 山海关, 1994. 1-2.
    Campbell A W, Davis W C, Travis J R. Shock Initiation of Detonation in Liquid Explosives [J]. Phys Fluids, 1961, 4(4): 498-510.
    Hubbard H W, Johnson M H. Initiation of Detonations [J]. J Appl Phys, 1959, 30: 765.
    Campbell A W, Davis W C, Ramsay J B, et al. Shock Initiation of Solid Explosives [J]. Phys Fluids, 1961, 4(4): 511-521.
    Zhang G R, Chen D N. Dynamics of Initiation of Condensed Explosives [M]. Beijing: Press of the National Defence Industry, 1991. (in Chinese)
    章冠人, 陈大年. 凝聚炸药起爆动力学 [M]. 北京: 国防工业出版社, 1991.
    Kroh M, Thoma K, Arnold W, et al. Shock Sensitivity and Performance of Several High Explosives [A]. 8th Symp on Detonation [C]. 1985. 1131-1138.
    Li Y C. Equation of State of Detonation Product ( Ⅱ)Does ZND Theory of Detonation Fail? (B) [J]. Chinese Journal of High Pressure Physics, 2000, 14(1): 6-15. (in Chinese)
    李银成. 爆轰产物物态方程(Ⅱ)爆轰的ZND理论不成立吗?(下) [J]. 高压物理学报, 2000, 14(1): 6-15.
    Li Y C. The Test of Detonation ZND Theory with Experimental data of TNT [J]. Chinese J Chem Phys, 2002, 15(6): 438-442. (in Chinese)
    李银成. 用TNT的{D, 0}实验数据对爆轰的ZND理论的检验 [J]. 化学物理学报, 2002, 15(6): 438-442.
    Marsh S P. LASL Shock Hugoniot Data [Z]. Berkeley, California: University of California Press, 1980. 599.
    Li Y C. Behaviors of Shock Initiation and after Initiation for Heterogeneous Explosives [J]. Chinese Journal of High Pressure Physics, to be published. (in Chinese).
    李银成. 非均匀炸药冲击起爆与起爆后的行为 [J]. 高压物理学报, 待发表.
    Walsh J M, Christian R H. Equation of State of Metals from Shock Wave Measurements [J]. Phys Rev, 1955, 97: 1544.
    Li Y C. Equation of State of Detonation Product (Ⅰ)Detonation Heat, Isentropic Equation and Equation of State of Detonation Product [J]. Chinese Journal of High Pressure Physics, 1998, 12(4): 271-281. (in Chinese)
    李银成. 爆轰产物物态方程(Ⅰ)爆热、爆轰产物的等熵方程和物态方程 [J]. 高压物理学报, 1998, 12(4): 271-281.
    Li Y C. Expressions of Cold Specific Energy and Cold Pressure for Detonation Products [J]. Chinese Journal of High Pressure Physics, 2005, 19(1): 71-79. (in Chinese)
    李银成. 爆轰产物的冷比内能与冷压的函数表达式 [J]. 高压物理学报, 2005, 19(1): 71-79.
    Xu S G. The Data for Powder Research [Z]. Beijing: Press of the National Defence Industry, 1976. 91-114. (in Chinese)
    徐叔刚.火药研究的有关数据 [Z]. 北京: 国防工业出版社, 1976. 91-114.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(7792) PDF downloads(810) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return