Volume 37 Issue 4
Sep 2023
Turn off MathJax
Article Contents
ZHU Qunlong, WANG Quan, WANG Xuguang, LI Rui, TU Changchang, YANG Rui, ZHU Wenyan. Characterization and Performance of Nano-La2O3 Prepared by Detonation Method[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 043201. doi: 10.11858/gywlxb.20230643
Citation: ZHU Qunlong, WANG Quan, WANG Xuguang, LI Rui, TU Changchang, YANG Rui, ZHU Wenyan. Characterization and Performance of Nano-La2O3 Prepared by Detonation Method[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 043201. doi: 10.11858/gywlxb.20230643

Characterization and Performance of Nano-La2O3 Prepared by Detonation Method

doi: 10.11858/gywlxb.20230643
  • Received Date: 19 Apr 2023
  • Rev Recd Date: 10 May 2023
  • Accepted Date: 17 May 2023
  • Available Online: 17 Aug 2023
  • Issue Publish Date: 01 Sep 2023
  • It is very important that new preparation method of nano-lanthanum oxide is explored in view of the current problems of low purity, poor sinterability, and large molecular gaps. Detonation method was employed to prepare rare earth nano-La2O3 powder in this study. La(NO3)3·6H2O was added to the emulsion explosive as a lanthanum source, and the high temperature and high pressure conditions for the synthesis of La2O3 were provided by the detonation reaction of the emulsion explosive in a 0.5 kg TNT equivalent vacuum explosion container. The physical phases, morphologies and ingredients of the purified and forged products were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), and the powder performances were determined by ultraviolet-visible spectroscopy (UV-Vis), Brunauer Emmett Teller (BET), CO2-temperature programmed desorption (CO2-TPD) and O2-temperature programmed desorption (O2-TPD). The results show that the forging temperature has a significant effect on the crystalline growth of La2O3 powder. Nano-La2O3 powder with high ultraviolet light absorption, high purity and good dispersion was successfully produced at a forging temperature of 800 ℃ and a forging time of 3 h. The particle size is in the range of 50-175 nm, and the crystal has a hexagonal structure. The specific surface area of the nano-La2O3 is 17.46 m2/g, with a good pore order and concentrated pore size distribution. The nano-La2O3 has good adsorption of acid gas and oxygen migration performance. The detonation method applied to the preparation process of nano-La2O3 powder provides a new reference for the industrial preparation of nano-La2O3.

     

  • loading
  • [1]
    LIU X, ZHANG T T, ZHANG L, et al. In-situ construction of ultra-thin graphitic carbon nitride supported lanthanum oxide nanosheet heterostructures with enhanced photocatalytic hydrogen evolution activity [J]. ChemPhotoChem, 2022, 6(2): e202100161.
    [2]
    WANG L Y, YU X H, WEI Y C, et al. Research advances of rare earth catalysts for catalytic purification of vehicle exhausts-commemorating the 100th anniversary of the birth of Academician Guangxian Xu [J]. Journal of Rare Earths, 2021, 39(10): 1151–1180. doi: 10.1016/j.jre.2021.05.001
    [3]
    YADAV A A, LOKHANDE A C, KIM J H, et al. Enhanced sensitivity and selectivity of CO2 gas sensor based on modified La2O3 nanorods [J]. Journal of Alloys and Compounds, 2017, 723: 880–886. doi: 10.1016/j.jallcom.2017.06.223
    [4]
    XIAO L J, DENG M, ZENG W G, et al. Novel robust superhydrophobic coating with self-cleaning properties in air and oil based on rare earth metal oxide [J]. Industrial & Engineering Chemistry Research, 2017, 56(43): 12354–12361.
    [5]
    LIU X R, WU A P, XIONG L C, et al. Electrospinning preparation and adsorption properties of La2O3 nanofibers and photoluminescence properties of La2O3: Eu nanofibers [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 431: 114010.
    [6]
    YU L K, HAN Y, LIN R L, et al. Controllable synthesis and luminescence properties of one-dimensional La2O3 and La2O3: Ln3+ (Ln = Er, Eu, Tb) nanorods with different aspect ratios [J]. Journal of Luminescence, 2021, 229: 117663.
    [7]
    WANG H, YANG C, LIU S X. Electrochemical performance of La2O3/Li2O/TiO2 nano-particle coated cathode material LiFePO4 [J]. Journal of Nanoscience and Nanotechnology, 2014, 14(9): 6880–6884. doi: 10.1166/jnn.2014.8923
    [8]
    朱琳娜. 稀土氧化镧气敏材料的制备、改性及其性能的研究 [D]. 南宁: 广西大学, 2020.

    ZHU L N. Preparation, modification and properties of rare earth lanthanum oxide gas sensing material [D]. Nanning: Guangxi University, 2020.
    [9]
    王丽华, 伊晓东. 纳米氧化镧的制备及性能研究 [J]. 福建师范大学学报(自然科学版), 2012, 28(4): 60–63.

    WANG L H, YI X D. Preparation and performance of nanosized La2O3 [J]. Journal of Fujian Normal University (Natural Science Edition), 2012, 28(4): 60–63.
    [10]
    俞娟, 李兵, 潘申成, 等. 水热法制备La2O3微球及其电催化产氧性能研究 [J]. 牡丹江师范学院学报(自然科学版), 2019(4): 30–33.

    YU J, LI B, PAN S C, et al. Hydrothermal synthesis of La2O3 microsphere and its oxygen evolution reaction performance [J]. Journal of Mudanjiang Normal University (Natural Sciences Edition), 2019(4): 30–33.
    [11]
    薛越, 李新梅. 沉淀法制备碳载纳米氧化镧 [J]. 无机盐工业, 2015, 47(8): 34–36.

    XUE Y, LI X M. Synthesis of carbon supported nano-sized lanthanum oxide by precipitation method [J]. Inorganic Chemicals Industry, 2015, 47(8): 34–36.
    [12]
    刘泽芳, 刘永畅, 巫圣喜, 等. 草酸盐沉淀法制备不同形貌粒度的La2O3粉体 [J]. 中国稀土学报, 2020, 38(6): 798–807.

    LIU Z F, LIU Y C, WU S X, et al. Preparation of La2O3 powder with different morphology and particle size by oxalate precipitation [J]. Journal of the Chinese Society of Rare Earths, 2020, 38(6): 798–807.
    [13]
    JIN H X, WANG J, YIN Y Y, et al. The preparation of La2O3@AAO with simple hydrothermal method under ambient pressure and the enhanced electrowetting-on-dielectric performance [J]. Superlattices and Microstructures, 2017, 110: 233–242. doi: 10.1016/j.spmi.2017.08.037
    [14]
    赵金花, 王宇松, 傅韬, 等. 离子液体辅助燃烧法制备多孔La2O3及其吸附性能研究 [J]. 工业水处理, 2020, 40(9): 49–53.

    ZHAO J H, WANG Y S, FU T, et al. Preparation of porous cerium oxide synthesized by low temperature combustion method assisted by ionic liquid and its adsorption properties analysis [J]. Industrial Water Treatment, 2020, 40(9): 49–53.
    [15]
    王晓月, 刘桂英, 沈美玉, 等. 溶胶凝胶法制备La2O3/AAO纳米阵列及其催化性能 [J]. 精细化工, 2016, 33(5): 546–551.

    WANG X Y, LIU G Y, SHEN M Y, et al. Preparation and catalytic properties of La2O3/AAO nanoarrays by sol-gel method [J]. Fine Chemicals, 2016, 33(5): 546–551.
    [16]
    MOOTHEDAN M, SHERLY K B. Synthesis, characterization and sorption studies of nano lanthanum oxide [J]. Journal of Water Process Engineering, 2016, 9: 29–37. doi: 10.1016/j.jwpe.2015.11.002
    [17]
    卢博, 刘宜强, 刘欣, 等. 草酸沉淀法制备超细氧化镧粉体研究 [J]. 无机盐工业, 2021, 53(5): 66–68.

    LU B, LIU Y Q, LIU X, et al. Study on preparation of ultrafine lanthanum oxide powder by precipitation with oxalic acid [J]. Inorganic Chemicals Industry, 2021, 53(5): 66–68.
    [18]
    吕春绪. 工业炸药理论 [M]. 北京: 兵器工业出版社, 2003.

    LYU C X. Industrial explosives theory [M]. Beijing: Ordnance Industry Press, 2003.
    [19]
    巴伦. 纯物质热化学数据手册 [M]. 程乃良, 牛四通, 徐桂英, 等, 译. 北京: 科学出版社, 2003.

    BARIN I. Thermochemical data of pure substances [M]. Translated by CHENG N L, NIU S T, XU G Y, et al. Beijing: Science Press, 2003.
    [20]
    SHENG J, ZHANG S, LV S, et al. Surfactant-assisted synthesis and characterization of lanthanum oxide nanostructures [J]. Journal of Materials Science, 2007, 42(23): 9565–9571. doi: 10.1007/s10853-007-1816-2
    [21]
    万静, 何茗. 超细氧化铈结晶度和粒径对抗紫外性能影响研究 [J]. 西南民族大学学报(自然科学版), 2012, 38(1): 106–112.

    WAN J, HE M. The influence of the crystallinity and particle size on the ultraviolet absorption of CeO2 powder [J]. Journal of Southwest University for Nationalities (Natural Science Edition), 2012, 38(1): 106–112.
    [22]
    LI S, LIN Y Y, WU Y Q, et al. Effect of Fe impurity on performance of La2O3 as a high k gate dielectric [J]. Ceramics International, 2019, 45(16): 21015–21022.
    [23]
    THOMMES M. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) [J]. Chemistry International, 2016, 38(1): 25. doi: 10.1515/ci-2016-0119
    [24]
    ZHAI Z, YANG X Y, XU L, et al. Novel mesoporous NiO/HTiNbO5 nanohybrids with high visible-light photocatalytic activity and good biocompatibility [J]. Nanoscale, 2012, 4(2): 547–556. doi: 10.1039/C1NR11091H
    [25]
    张伟庆, 黄滨, 余小岚, 等. 对BJH方法计算孔径分布过程的解读 [J]. 大学化学, 2020, 35(2): 98–106. doi: 10.3866/PKU.DXHX201906022

    ZHANG W Q, HUANG B, YU X L, et al. Interpretation of BJH method for calculating aperture distribution process [J]. University Chemistry, 2020, 35(2): 98–106. doi: 10.3866/PKU.DXHX201906022
    [26]
    WANG X X, SCHWARTZ V, CLARK J C, et al. Infrared study of CO2 sorption over “molecular basket” sorbent consisting of polyethylenimine-modified mesoporous molecular sieve [J]. The Journal of Physical Chemistry C, 2009, 113(17): 7260–7268. doi: 10.1021/jp809946y
    [27]
    ZHU J J, LI H L, ZHONG L Y, et al. ChemInform abstract: perovskite oxides: preparation, characterizations, and applications in heterogeneous catalysis [J]. ChemInform, 2014, 45(44): 2917–2940.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views(143) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return