Volume 37 Issue 4
Sep 2023
Turn off MathJax
Article Contents
XIU Chengdong, WANG Changfeng, LI Bing, GUAN Renguo. Numerical Simulation Study on the Influence of Hard Phase Shape on the Fracture Behavior of Ti-Al3Ti Bionic Composites[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 044201. doi: 10.11858/gywlxb.20230629
Citation: XIU Chengdong, WANG Changfeng, LI Bing, GUAN Renguo. Numerical Simulation Study on the Influence of Hard Phase Shape on the Fracture Behavior of Ti-Al3Ti Bionic Composites[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 044201. doi: 10.11858/gywlxb.20230629

Numerical Simulation Study on the Influence of Hard Phase Shape on the Fracture Behavior of Ti-Al3Ti Bionic Composites

doi: 10.11858/gywlxb.20230629
  • Received Date: 27 Mar 2023
  • Rev Recd Date: 25 Apr 2023
  • Available Online: 07 Jul 2023
  • Issue Publish Date: 01 Sep 2023
  • Al3Ti is characterized by low density and high hardness, however, due to its brittleness, it is prone to fracture under smaller deformation. To improve the application range of Al3Ti, inspired by biological structures, a biomimetic finite element model was established based on the geometry of shell pearl layer, conch shell and fish scale, and the influences of hard phase shape, as well as impact velocity, were investigated to analyze the fracture resistance mechanism of bionic composites in terms of fracture behavior, crack propagation process and energy absorption effect. A shape coefficient was defined to optimize the structure design. The results show that the shape of the hard phase has a significant effect on the fracture behavior of the bioinspired pearl-like layer specimens under quasi-static condition. The rectangular hard phase can better hinder the crack growth toward the load end, thus improving the load-bearing capacity of the specimen. The specimen with shape factor around 5.0 shows the optimal fracture resistance and energy absorption. Under dynamic impact conditions, the soft phase has increased ability to hinder crack growth, which further improves the fracture resistance and energy absorption effect of the rectangular specimen.

     

  • loading
  • [1]
    李红, 闫维嘉, 张禹, 等. 先进航空材料焊接过程热裂纹研究进展 [J]. 材料工程, 2022, 50(2): 50–61. doi: 10.11868/j.issn.1001-4381.2021.000676

    LI H, YAN W J, ZHANG Y, et al. Research progress of hot crack in fusion welding of advanced aeronautical materials [J]. Journal of Materials Engineering, 2022, 50(2): 50–61. doi: 10.11868/j.issn.1001-4381.2021.000676
    [2]
    ESPINOSA H D, RIM J E, BARTHELAT F, et al. Merger of structure and material in nacre and bone-Perspectives on de novo biomimetic materials [J]. Progress in Materials Science, 2009, 54(8): 1059–1100. doi: 10.1016/j.pmatsci.2009.05.001
    [3]
    MIZUTA N, MATSUURA K, KIRIHARA S, et al. Titanium aluminide coating on titanium surface using three-dimensional microwelder [J]. Materials Science and Engineering: A, 2008, 492(1/2): 199–204. doi: 10.1016/j.msea.2008.03.028
    [4]
    NOFAR M, HOSSEINI H R M, KOLAGAR-DAROONKOLAIE N. Fabrication of high wear resistant Al/Al3Ti metal matrix composite by in situ hot press method [J]. Materials & Design, 2009, 30(2): 280–286. doi: 10.1016/j.matdes.2008.04.071
    [5]
    HARACH D J, VECCHIO K S. Microstructure evolution in metal-intermetallic laminate (MIL) composites synthesized by reactive foil sintering in air [J]. Metallurgical and Materials Transactions A, 2001, 32(6): 1493–1505. doi: 10.1007/s11661-001-0237-0
    [6]
    PRICE R D, JIANG F C, KULIN R M, et al. Effects of ductile phase volume fraction on the mechanical properties of Ti-Al3Ti metal-intermetallic laminate (MIL) composites [J]. Materials Science and Engineering: A, 2011, 528(7/8): 3134–3146.
    [7]
    LI T Z, JIANG F C, OLEVSKY E A, et al. Damage evolution in Ti6Al4V-Al3Ti metal-intermetallic laminate composites [J]. Materials Science and Engineering: A, 2007, 443(1/2): 1–15.
    [8]
    ADHARAPURAPU R R, VECCHIO K S, JIANG F C, et al. Effects of ductile laminate thickness, volume fraction, and orientation on fatigue-crack propagation in Ti-Al3Ti metal-intermetallic laminate composites [J]. Metallurgical and Materials Transactions A, 2005, 36(6): 1595–1608. doi: 10.1007/s11661-005-0251-8
    [9]
    张海广, 王瑜, 安连浩, 等. 冲击载荷下分支交错层状仿生复合材料动态断裂行为的实验研究和数值模拟 [J]. 高压物理学报, 2022, 36(1): 014101. doi: 10.11858/gywlxb.20210776

    ZHANG H G, WANG Y, AN L H, et al. Experimental study and numerical simulation of dynamic fracture behavior of branch staggered laminated biomimetic composites under impact loading [J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 014101. doi: 10.11858/gywlxb.20210776
    [10]
    武晓东, 张海广, 王瑜, 等. 冲击载荷下仿贝壳珍珠层Voronoi结构的动态力学响应 [J]. 高压物理学报, 2020, 34(6): 064201. doi: 10.11858/gywlxb.20200559

    WU X D, ZHANG H G, WANG Y, et al. Dynamic responses of nare-like Voronoi structure under impact loading [J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 064201. doi: 10.11858/gywlxb.20200559
    [11]
    WANG R Z, SUO Z, EVANS A G, et al. Deformation mechanisms in nacre [J]. Journal of Materials Research, 2001, 16(9): 2485–2493. doi: 10.1557/JMR.2001.0340
    [12]
    YOURDKHANI M, PASINI D, BARTHELAT F. Multiscale mechanics and optimization of gastropod shells [J]. Journal of Bionic Engineering, 2011, 8(4): 357–368. doi: 10.1016/S1672-6529(11)60041-3
    [13]
    ZAREMBA C M, BELCHER A M, FRITZ M, et al. Critical transitions in the biofabrication of abalone shells and flat pearls [J]. Chemistry of Materials, 1996, 8(3): 679–690. doi: 10.1021/cm9503285
    [14]
    SARIKAYA M, GUNNISON K E, YASREBI M, et al. Mechanical property-microstructural relationships in abalone shell [J]. MRS Online Proceedings Library, 1989, 174(1): 109–116. doi: 10.1557/PROC-174-109
    [15]
    JACKSON A P, VINCENT J F V, TURNER R M. The mechanical design of nacre [J]. Proceedings of the Royal Society B: Biological Sciences, 1988, 234(1277): 415–440. doi: 10.1098/rspb.1988.0056
    [16]
    NUKALA P K V V, SIMUNOVIC S. A continuous damage random thresholds model for simulating the fracture behavior of nacre [J]. Biomaterials, 2005, 26(30): 6087–6098. doi: 10.1016/j.biomaterials.2005.03.013
    [17]
    SHIN Y A, YIN S, LI X Y, et al. Nanotwin-governed toughening mechanism in hierarchically structured biological materials [J]. Nature Communications, 2016, 7(1): 10772. doi: 10.1038/ncomms10772
    [18]
    GHAZLAN A, NGO T, TAN P, et al. Inspiration from nature’s body armours: a review of biological and bioinspired composites [J]. Composites Part B: Engineering, 2021, 205: 108513. doi: 10.1016/j.compositesb.2020.108513
    [19]
    LI T Z, GRIGNON F, BENSON D J, et al. Modeling the elastic properties and damage evolution in Ti-Al3Ti metal-intermetallic laminate (MIL) composites [J]. Materials Science and Engineering: A, 2004, 374(1/2): 10–26. doi: 10.1016/j.msea.2003.09.074
    [20]
    CAO Y, ZHU S F, GUO C H, et al. Numerical investigation of the ballistic performance of metal-intermetallic laminate composites [J]. Applied Composite Materials, 2015, 22(4): 437–456. doi: 10.1007/s10443-014-9416-1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views(112) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return