Volume 36 Issue 6
Dec 2022
Turn off MathJax
Article Contents
LIU Yan, LI Da, CUI Tian. Abnormal Properties of Halogen Compounds under High Pressure[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 060102. doi: 10.11858/gywlxb.20220672
Citation: LIU Yan, LI Da, CUI Tian. Abnormal Properties of Halogen Compounds under High Pressure[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 060102. doi: 10.11858/gywlxb.20220672

Abnormal Properties of Halogen Compounds under High Pressure

doi: 10.11858/gywlxb.20220672
  • Received Date: 08 Oct 2022
  • Rev Recd Date: 01 Nov 2022
  • Available Online: 30 Nov 2022
  • Issue Publish Date: 05 Dec 2022
  • The fundamental properties of condensed matter strongly depend on its microscopic configuration and electronic structure. High pressure can effectively reduce the distance between atoms, result in the rearrangement of electronic configuration and change the bonding mode, so that enabling the matter to exist in unconventional physical and chemical state, forming new structures, new phenomena and new properties that cannot be obtained under ambient pressure. In this paper, taking the main-group halogens as example, the abnormal physical properties of halogen compounds under high pressure are briefly introduced. Related studies have shown that the valence states, coordination, and bonding modes of halogen compounds under high pressure are different from those under ambient pressure. These studies not only enhance the basic understanding of halogen, but also broaden the view of high-pressure physics.

     

  • loading
  • [1]
    LANDAU L D, LIFSHITZ E M. Quantum mechanics: non-relativistic theory [M]. 3rd ed. London: Butterworth-Heinemann, 2003.
    [2]
    PAULING L. The nature of the chemical bond and the structure of molecules and crystals [M]. 2nd ed. Ithaca: Cornell University Press, 1960.
    [3]
    MURREL J N, KETTLE S F A, TEDDER J M. The chemical bond [M]. New York: John Willey & Sons, 1985.
    [4]
    ZHANG L J, WANG Y C, LV J, et al. Materials discovery at high pressures [J]. Nature Reviews Materials, 2017, 2(4): 17005. doi: 10.1038/natrevmats.2017.5
    [5]
    MIAO M S, SUN Y H, ZUREK E, et al. Chemistry under high pressure [J]. Nature Reviews Chemistry, 2020, 4(10): 508–527. doi: 10.1038/s41570-020-0213-0
    [6]
    DONG X, OGANOV A R, GONCHAROV A F, et al. A stable compound of helium and sodium at high pressure [J]. Nature Chemistry, 2017, 9(5): 440–445. doi: 10.1038/nchem.2716
    [7]
    ZHU L, LIU H Y, PICKARD C J, et al. Reactions of xenon with iron and nickel are predicted in the Earth’s inner core [J]. Nature Chemistry, 2014, 6(7): 644–648. doi: 10.1038/nchem.1925
    [8]
    MA Y M, EREMETS M, OGANOV A R, et al. Transparent dense sodium [J]. Nature, 2009, 458(7235): 182–185. doi: 10.1038/nature07786
    [9]
    MIAO M S, WANG X L, BRGOCH J, et al. Anionic chemistry of noble gases: formation of Mg-NG (NG = Xe, Kr, Ar) compounds under pressure [J]. Journal of the American Chemical Society, 2015, 137(44): 14122–14128. doi: 10.1021/jacs.5b08162
    [10]
    DUAN D F, LIU Y X, TIAN F B, et al. Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity [J]. Scientific Reports, 2014, 4: 6968. doi: 10.1038/srep06968
    [11]
    DROZDOV A P, EREMETS M I, TROYAN I A, et al. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system [J]. Nature, 2015, 525(7567): 73–76. doi: 10.1038/nature14964
    [12]
    GREENWOOD N N, EARNSHAW A. Chemistry of the elements [M]. 2nd ed. Oxford: Butterworth-Heinemann, 1997.
    [13]
    SHEN Y Q, OGANOV A R, QIAN G R, et al. Novel lithium-nitrogen compounds at ambient and high pressures [J]. Scientific Reports, 2015, 5: 14204. doi: 10.1038/srep14204
    [14]
    DROZDOV A P, KONG P P, MINKOV V S, et al. Superconductivity at 250 K in lanthanum hydride under high pressures [J]. Nature, 2019, 569(7757): 528–531. doi: 10.1038/s41586-019-1201-8
    [15]
    PENG F, SUN Y, PICKARD C J, et al. Hydrogen clathrate structures in rare earth hydrides at high pressures: possible route to room-temperature superconductivity [J]. Physical Review Letters, 2017, 119(10): 107001. doi: 10.1103/PhysRevLett.119.107001
    [16]
    HORVATH-BORDON E, RIEDEL R, ZERR A, et al. High-pressure chemistry of nitride-based materials [J]. Chemical Society Reviews, 2006, 35(10): 987–1014. doi: 10.1039/b517778m
    [17]
    SAN-MIGUEL A, LIBOTTE H, GAUTHIER M, et al. New phase transition of solid bromine under high pressure [J]. Physical Review Letters, 2007, 99(1): 015501. doi: 10.1103/PhysRevLett.99.015501
    [18]
    KUME T, HIRAOKA T, OHYA Y, et al. High pressure Raman study of bromine and iodine: soft phonon in the incommensurate phase [J]. Physical Review Letters, 2005, 94(6): 065506. doi: 10.1103/PhysRevLett.94.065506
    [19]
    DUAN D F, JIN X L, MA Y M, et al. Effect of nonhydrostatic pressure on superconductivity of monatomic iodine: an ab initio study [J]. Physical Review B, 2009, 79(6): 064518. doi: 10.1103/PhysRevB.79.064518
    [20]
    ZHANG W W, OGANOV A R, GONCHAROV A F, et al. Unexpected stable stoichiometries of sodium chlorides [J]. Science, 2013, 342(6165): 1502–1505. doi: 10.1126/science.1244989
    [21]
    ZHANG W W, OGANOV A R, ZHU Q, et al. Stability of numerous novel potassium chlorides at high pressure [J]. Scientific Reports, 2016, 6: 26265. doi: 10.1038/srep26265
    [22]
    PORȨBA T, RACIOPPI S, GARBARINO G, et al. Investigating the structural symmetrization of CsI3 at high pressures through combined X-ray diffraction experiments and theoretical analysis [J]. Inorganic Chemistry, 2022, 61(28): 10977–10985. doi: 10.1021/acs.inorgchem.2c01690
    [23]
    HOLZAPFEL W B. Physics of solids under strong compression [J]. Reports on Progress in Physics, 1996, 59(1): 29–90. doi: 10.1088/0034-4885/59/1/002
    [24]
    WENTORF JR R H. Cubic form of boron nitride [J]. Journal of Chemical Physics, 1957, 26(4): 956. doi: 10.1063/1.1745964
    [25]
    TOMASINO D, KIM M, SMITH J, et al. Pressure-induced symmetry-lowering transition in dense nitrogen to layered polymeric nitrogen (LP-N) with colossal raman intensity [J]. Physical Review Letters, 2014, 113(20): 205502. doi: 10.1103/PhysRevLett.113.205502
    [26]
    EREMETS M I, GAVRILIUK A G, TROJAN I A, et al. Single-bonded cubic form of nitrogen [J]. Nature Materials, 2004, 3(8): 558–563. doi: 10.1038/nmat1146
    [27]
    MIAO M S, HOFFMANN R. High pressure electrides: a predictive chemical and physical theory [J]. Accounts of Chemical Research, 2014, 47(4): 1311–1317. doi: 10.1021/ar4002922
    [28]
    BUZEA C, ROBBIE K. Assembling the puzzle of superconducting elements: a review [J]. Superconductor Science and Technology, 2005, 18(1): R1–R8. doi: 10.1088/0953-2048/18/1/R01
    [29]
    DUBROVINSKY L, DUBROVINSKAIA N, BYKOVA E, et al. The most incompressible metal osmium at static pressures above 750 gigapascals [J]. Nature, 2015, 525(7568): 226–229. doi: 10.1038/nature14681
    [30]
    DUBROVINSKAIA N, DUBROVINSKY L, SOLOPOVA N A, et al. Terapascal static pressure generation with ultrahigh yield strength nanodiamond [J]. Science Advances, 2016, 2(7): e1600341. doi: 10.1126/sciadv.1600341
    [31]
    ZHAI S M, ITO E. Recent advances of high-pressure generation in a multianvil apparatus using sintered diamond anvils [J]. Geoscience Frontiers, 2011, 2(1): 101–106. doi: 10.1016/j.gsf.2010.09.005
    [32]
    MUJICA A, RUBIO A, MUÑOZ A, et al. High-pressure phases of group-Ⅳ, Ⅲ-Ⅴ, and Ⅱ-Ⅵ compounds [J]. Reviews of Modern Physics, 2003, 75(3): 863–912. doi: 10.1103/RevModPhys.75.863
    [33]
    WANG Y C, MA Y M. Perspective: crystal structure prediction at high pressures [J]. Journal of Chemical Physics, 2014, 140(4): 040901. doi: 10.1063/1.4861966
    [34]
    BOTANA J, BRGOCH J, HOU C J, et al. Iodine anions beyond −1: formation of Li nI (n = 2–5) and its interaction with quasiatoms [J]. Inorganic Chemistry, 2016, 55(18): 9377–9382. doi: 10.1021/acs.inorgchem.6b01561
    [35]
    WANG C, LIU Y X, CHEN X, et al. Pressure-induced unexpected −2 oxidation states of bromine and superconductivity in magnesium bromide [J]. Physical Chemistry Chemical Physics, 2020, 22(5): 3066–3072. doi: 10.1039/C9CP05627K
    [36]
    YANG L M, GANZ E, CHEN Z F, et al. Four decades of the chemistry of planar hypercoordinate compounds [J]. Angewandte Chemie International Edition, 2015, 54(33): 9468–9501. doi: 10.1002/anie.201410407
    [37]
    ZHANG H J, LI Y F, HOU J H, et al. FeB6 monolayers: the graphene-like material with hypercoordinate transition metal [J]. Journal of the American Chemical Society, 2016, 138(17): 5644–5651. doi: 10.1021/jacs.6b01769
    [38]
    LIPKE M C, TILLEY T D. Hypercoordinate ketone adducts of electrophilic η3-H2SiRR’ ligands on ruthenium as key intermediates for efficient and robust catalytic hydrosilation [J]. Journal of the American Chemical Society, 2014, 136(46): 16387–16398. doi: 10.1021/ja509073c
    [39]
    WANG Z X, VON RAGUÉ SCHLEYER P. Planar hypercoordinate carbons joined: wheel-shaped molecules with C-C axles [J]. Angewandte Chemie International Edition, 2002, 41(21): 4082–4085. doi: 10.1002/1521-3773(20021104)41:21<4082::AID-ANIE4082>3.0.CO;2-Q
    [40]
    KHAN A, FOUCHER D. Hypercoordinate compounds of the group 14 elements containing κn-C, N-, C, O-, C, S- and C, P-ligands [J]. Coordination Chemistry Reviews, 2016, 312: 41–66. doi: 10.1016/j.ccr.2015.10.009
    [41]
    WILLEMSENS L C, VAN DER KERK G J M. Investigations on organolead compounds: Ⅰ. a novel red organolead compound a reinvestigation of krause’s red diphenyllead [J]. Journal of Organometallic Chemistry, 1964, 2(3): 271–276. doi: 10.1016/S0022-328X(00)80522-7
    [42]
    MUSHER J I. The chemistry of hypervalent molecules [J]. Angewandte Chemie International Edition, 1969, 8(1): 54–68. doi: 10.1002/anie.196900541
    [43]
    SCHLEYER P. Hypervalent compounds [J]. Chemical & Engineering News, 1984, 62(22): 4.
    [44]
    RAHM M, HOFFMANN R, ASHCROFT N W. Atomic and ionic radii of elements 1–96 [J]. Chemistry: A European Journal, 2016, 22(41): 14625–14632. doi: 10.1002/chem.201602949
    [45]
    CHRISTE K O, CURTIS E C, DIXON D A. On the problem of heptacoordination: vibrational spectra, structure, and fluxionality of iodine heptafluoride [J]. Journal of the American Chemical Society, 1993, 115(4): 1520–1526. doi: 10.1021/ja00057a044
    [46]
    CHRISTE K O, DIXON D A, SANDERS J C P, et al. Heptacoordination: pentagonal bipyramidal ${\rm XeF_7^+ }$ and ${\rm TeF_7^- }$ ions [J]. Journal of the American Chemical Society, 1993, 115(21): 9461–9467. doi: 10.1021/ja00074a011
    [47]
    CHRISTE K O, SANDERS J C P, SCHROBILGEN G J, et al. High-coordination number fluoro- and oxofluoro-anions; IF6O, ${\rm TeF_6O_2^- }$ , ${\rm TeF_7^- }$ , ${\rm IF_8^-} $ and ${\rm TeF_8^{2-}} $ [J]. Journal of the Chemical Society, Chemical Communications, 1991(13): 837–840. doi: 10.1039/C39910000837
    [48]
    RIEDEL S, KAUPP M. The highest oxidation states of the transition metal elements [J]. Coordination Chemistry Reviews, 2009, 253(5/6): 606–624. doi: 10.1016/j.ccr.2008.07.014
    [49]
    LUO D B, LV J, PENG F, et al. A hypervalent and cubically coordinated molecular phase of IF8 predicted at high pressure [J]. Chemical Science, 2019, 10(8): 2543–2550. doi: 10.1039/C8SC04635B
    [50]
    TANG S, WU Y, LIAO W Q, et al. Revealing the metal-like behavior of iodine: an iodide-catalysed radical oxidative alkenylation [J]. Chemical Communications, 2014, 50(34): 4496–4499. doi: 10.1039/C4CC00644E
    [51]
    LIANG H, CIUFOLINI M A. Chiral hypervalent iodine reagents in asymmetric reactions [J]. Angewandte Chemie International Edition, 2011, 50(50): 11849–11851. doi: 10.1002/anie.201106127
    [52]
    SREENITHYA A, PATEL C, HADAD C M, et al. Hypercoordinate iodine catalysts in enantioselective transformation: the role of catalyst folding in stereoselectivity [J]. ACS Catalysis, 2017, 7(6): 4189–4196. doi: 10.1021/acscatal.7b00975
    [53]
    BRILL T B. d orbitals in main group elements [J]. Journal of Chemical Education, 1973, 50(6): 392. doi: 10.1021/ed050p392
    [54]
    CONNERADE J P, DOLMATOV V K, LAKSHMI P A. The filling of shells in compressed atoms [J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2000, 33(2): 251–264. doi: 10.1088/0953-4075/33/2/310
    [55]
    ALLRED A L. Electronegativity values from thermochemical data [J]. Journal of Inorganic and Nuclear Chemistry, 1961, 17(3/4): 215–221. doi: 10.1016/0022-1902(61)80142-5
    [56]
    LIU Y, WANG R, WANG Z G, et al. Formation of twelve-fold iodine coordination at high pressure [J]. Nature Communications, 2022, 13(1): 412. doi: 10.1038/s41467-022-28083-4
    [57]
    VOGT T, FITCH A N, COCKCROFT J K. Crystal and molecular structures of rhenium heptafluoride [J]. Science, 1994, 263(5151): 1265–1267. doi: 10.1126/science.263.5151.1265
    [58]
    SEPPELT K. Molecular hexafluorides [J]. Chemical Reviews, 2015, 115(2): 1296–1306. doi: 10.1021/cr5001783
    [59]
    MOLSKI M J, SEPPELT K. The transition metal hexafluorides [J]. Dalton Transactions, 2009(18): 3379–3383. doi: 10.1039/b821121c
    [60]
    DREWS T, SUPEŁ J, HAGENBACH A, et al. Solid state molecular structures of transition metal hexafluorides [J]. Inorganic Chemistry, 2006, 45(9): 3782–3788. doi: 10.1021/ic052029f
    [61]
    CHRISTE K O. Bartlett’s discovery of noble gas fluorides, a milestone in chemical history [J]. Chemical Communications, 2013, 49(41): 4588–4590. doi: 10.1039/c3cc41387j
    [62]
    BARTLETT N. Xenon hexafluoroplatinate (V) Xe+[PtF6] [J]. Proceedings of the Chemical Society, 1962, 112(6): 218.
    [63]
    RIEDEL S, KAUPP M. Where is the limit of highly fluorinated high-oxidation-state osmium species? [J]. Inorganic Chemistry, 2006, 45(26): 10497–10502. doi: 10.1021/ic061054y
    [64]
    LIN J Y, DU X, RAHM M, et al. Exploring the limits of transition-metal fluorination at high pressures [J]. Angewandte Chemie International Edition, 2020, 59(23): 9155–9162. doi: 10.1002/anie.202002339
    [65]
    LIN J Y, ZHAO Z Y, LIU C Y, et al. IrF8 molecular crystal under high pressure [J]. Journal of the American Chemical Society, 2019, 141(13): 5409–5414. doi: 10.1021/jacs.9b00069
    [66]
    MIAO M S, BOTANA J, PRAVICA M, et al. Inner-shell chemistry under high pressure [J]. Japanese Journal of Applied Physics, 2017, 56(5S3): 05FA10. doi: 10.7567/JJAP.56.05FA10
    [67]
    MIAO M S. Caesium in high oxidation states and as a p-block element [J]. Nature Chemistry, 2013, 5(10): 846–852. doi: 10.1038/nchem.1754
    [68]
    AGRON P A, BEGUN G M, LEVY H A, et al. Xenon difluoride and the nature of the xenon-fluorine bond [J]. Science, 1963, 139(3557): 842–844. doi: 10.1126/science.139.3557.842
    [69]
    CHRISTE K O, CURTIS E C, DIXON D A, et al. The pentafluoroxenate (Ⅳ) anion, ${\rm XeF_5^-} $ : the first example of a pentagonal planar AX5 species [J]. Journal of the American Chemical Society, 1991, 113(9): 3351–3361. doi: 10.1021/ja00009a021
    [70]
    LUO D B, WANG Y C, YANG G C, et al. Barium in high oxidation states in pressure-stabilized barium fluorides [J]. The Journal of Physical Chemistry C, 2018, 122(23): 12448–12453. doi: 10.1021/acs.jpcc.8b03459
    [71]
    BOTANA J, WANG X L, HOU C J, et al. Mercury under pressure acts as a transition metal: calculated from first principles [J]. Angewandte Chemie International Edition, 2015, 54(32): 9280–9283. doi: 10.1002/anie.201503870
    [72]
    WANG X F, ANDREWS L, RIEDEL S, et al. Mercury is a transition metal: the first experimental evidence for HgF4 [J]. Angewandte Chemie International Edition, 2007, 46(44): 8371–8375. doi: 10.1002/anie.200703710
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views(1212) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return