Volume 37 Issue 1
Feb 2023
Turn off MathJax
Article Contents
TAO Peidong, ZHANG Hongping, ZHANG Zhiyou, LI Mu. Backward Integration Method for Multilayer Target Quasi-Isentropic Compression Experiments[J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 012301. doi: 10.11858/gywlxb.20220640
Citation: TAO Peidong, ZHANG Hongping, ZHANG Zhiyou, LI Mu. Backward Integration Method for Multilayer Target Quasi-Isentropic Compression Experiments[J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 012301. doi: 10.11858/gywlxb.20220640

Backward Integration Method for Multilayer Target Quasi-Isentropic Compression Experiments

doi: 10.11858/gywlxb.20220640
  • Received Date: 15 Aug 2022
  • Rev Recd Date: 28 Aug 2022
  • Available Online: 21 Feb 2023
  • Issue Publish Date: 05 Feb 2023
  • According to the requirements of target structure design and experimental data processing in multilayer target quasi-isentropic compression experiments, an interlayer transfer method for multilayer targets was proposed based on the backward integration method, the backward calculation of multilayer targets from the measuring surface to the loading surface or laser ablation surface was realized. Through the forward and backward integration numerical experiments and the application in laser driven experiment, the effectiveness of the backward integration method in multilayer targets was verified, and the backward integration processing accuracy of multilayer targets can reach within 1% in most of the calculation area. The waveform design of quasi-isentropic compression multilayer target experiments was carried out by backward integration method, and the influence of multilayer targets with different thicknesses of glue on quasi-isentropic compression experiments was analyzed.

     

  • loading
  • [1]
    FRATANDUONO D E, SMITH R F, ALI S J, et al. Probing the solid phase of noble metal copper at terapascal conditions [J]. Physical Review Letters, 2020, 124(1): 015701. doi: 10.1103/PhysRevLett.124.015701
    [2]
    KRAUS R G, HEMLEY R J, ALI S J, et al. Measuring the melting curve of iron at super-Earth core conditions [J]. Science, 2022, 375(6577): 202–205. doi: 10.1126/science.abm1472
    [3]
    HAYES D B. Backward integration of the equations of motion to correct for free surface perturbations: SAND2001−1440 [R]. Livermore: Sandia National Laboratories, 2001.
    [4]
    DAVIS J P. Experimental measurement of the principal isentrope for aluminum 6061-T6 to 240 GPa [J]. Journal of Applied Physics, 2006, 99(10): 103512. doi: 10.1063/1.2196110
    [5]
    SEAGLE C T, PORWITZKY A J. Shock-ramp compression of tin near the melt line [J]. AIP Conference Proceedings, 2018, 1979(1): 040005. doi: 10.1063/1.5044783
    [6]
    ROTHMAN S D, ALI S J, BROWN J L, et al. Shock-ramp analysis test problem [J]. Journal of Applied Physics, 2021, 129(18): 185901. doi: 10.1063/5.0045562
    [7]
    王刚华, 柏劲松, 孙承纬, 等. 准等熵压缩流场反演技术研究 [J]. 高压物理学报, 2008, 22(2): 149–152. doi: 10.11858/gywlxb.2008.02.007

    WANG G H, BAI J S, SUN C W, et al. Backward integration method for tracing isentropic compression field [J]. Chinese Journal of High Pressure Physics, 2008, 22(2): 149–152. doi: 10.11858/gywlxb.2008.02.007
    [8]
    王刚华, 孙承纬, 王桂吉, 等. 带窗口准等熵压缩实验的流场反演技术 [J]. 爆炸与冲击, 2009, 29(1): 101–104. doi: 10.11883/1001-1455(2009)01-0101-04

    WANG G H, SUN C W, WANG G J, et al. Backward analysis for isentropic compression experiments with windows backed on samples [J]. Explosion and Shock Waves, 2009, 29(1): 101–104. doi: 10.11883/1001-1455(2009)01-0101-04
    [9]
    张红平, 孙承纬, 李牧, 等. 准等熵实验数据处理的反积分方法研究 [J]. 力学学报, 2011, 43(1): 105–111. doi: 10.6052/0459-1879-2011-1-lxxb2010-053

    ZHANG H P, SUN C W, LI M, et al. Backward integration method in data processing of quasi-isentropic compression experiment [J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1): 105–111. doi: 10.6052/0459-1879-2011-1-lxxb2010-053
    [10]
    张红平, 柏劲松, 王刚华. 复杂加载下材料动态响应的数据反演技术 [J]. 计算力学学报, 2013, 30(6): 790–795. doi: 10.7511/jslx201306007

    ZHANG H P, BAI J S, WANG G H. Material dynamic response analysis under complex loading using backward integration method [J]. Chinese Journal of Computational Mechanics, 2013, 30(6): 790–795. doi: 10.7511/jslx201306007
    [11]
    张红平, 罗斌强, 王桂吉, 等. 基于特征线反演的斜波加载实验数据处理与分析 [J]. 高压物理学报, 2016, 30(2): 123–129. doi: 10.11858/gywlxb.2016.02.006

    ZHANG H P, LUO B Q, WANG G J, et al. Inverse characteristic analysis of ramp loading experiments [J]. Chinese Journal of High Pressure Physics, 2016, 30(2): 123–129. doi: 10.11858/gywlxb.2016.02.006
    [12]
    RIGG P A, KNUDSON M D, SCHARFF R J, et al. Determining the refractive index of shocked [100] lithium fluoride to the limit of transmissibility [J]. Journal of Applied Physics, 2014, 116(3): 033515. doi: 10.1063/1.4890714
    [13]
    CHAURASIA S, TRIPATHI S, LESHMA P, et al. Shock pressure measurements in polyvinyl alcohol (PVA) films using multi-frame optical shadowgraphy [J]. Journal of Physics: Conference Series, 2012, 377: 012042. doi: 10.1088/1742-6596/377/1/012042
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views(162) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return