Volume 37 Issue 1
Feb 2023
Turn off MathJax
Article Contents
HE Shunjiang, REN Huilan, LI Jian. Initiation Mechanism of Detonation Wave in an Annular Channel[J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 015202. doi: 10.11858/gywlxb.20220610
Citation: HE Shunjiang, REN Huilan, LI Jian. Initiation Mechanism of Detonation Wave in an Annular Channel[J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 015202. doi: 10.11858/gywlxb.20220610

Initiation Mechanism of Detonation Wave in an Annular Channel

doi: 10.11858/gywlxb.20220610
  • Received Date: 13 Jun 2022
  • Rev Recd Date: 22 Jun 2022
  • Available Online: 28 Feb 2023
  • Issue Publish Date: 05 Feb 2023
  • The design of annular combustion chamber and pre-detonation tube of rotary detonation engines is the key factor affecting the ignition performance of the engines. In order to obtain the detonation initiation mechanism in an annular combustion chamber, the multi-frame short-time shutter-opening method was used in experiment to study the propagation process and mode of the detonation wave of acetylene and oxygen with different argon dilutions entering an annular channel tangentially through a straight pipe. We focus on the mechanism of detonation wave failure and reinitiation. By analyzing the cellular mode, it is found that the propagation mode of the detonation wave in the annular channel can be divided into three states: subcritical, critical and supercritical. The detonation wave in the annular channel propagates clockwise and counterclockwise at the same time. Depending on the initial pressure and the width of the channel, there can be a mode of complete detonation, a mode of detonation-reignition, and a mode of no detonation at all, corresponding to subcritical, critical and supercritical states. The order in which the three states appear in the clockwise and counterclockwise directions are not consistent, and the counterclockwise propagation is more likely to be extinguished. The study also found that reinitiation is achieved in two ways. One is by decoupling the reflection of the detonation wave from the inner wall surface and the subsequent lateral detonation wave, and the other is by burning to detonation. By analyzing the critical tube diameter of the straight tube, it is found that the critical tube diameter approaches the unstable detonation in the classical diffraction problem as the width of the channel increases, regardless of whether the detonation wave of acetylene and oxygen is diluted by high concentration or low concentration of argon gas. The experimental results can provide technical support for the structural design of the combustion chamber and pre-detonation tube of rotary detonation engines.

     

  • loading
  • [1]
    ROY G D, FROLOV S M, BORISOV A A, et al. Pulse detonation propulsion: challenges, current status, and future perspective [J]. Progress in Energy and Combustion Science, 2004, 30(6): 545–672. doi: 10.1016/j.pecs.2004.05.001
    [2]
    BRAUN E M, LU F K, WILSON D R, et al. Airbreathing rotating detonation wave engine cycle analysis [J]. Aerospace Science and Technology, 2013, 27(1): 201–208. doi: 10.1016/j.ast.2012.08.010
    [3]
    SATO T, RAMAN V. Detonation structure in ethylene/air-based non-premixed rotating detonation engine [J]. Journal of Propulsion and Power, 2020, 36(5): 752–762. doi: 10.2514/1.B37664
    [4]
    王健平, 周蕊, 武丹. 连续旋转爆轰发动机的研究进展 [J]. 实验流体力学, 2015, 29(4): 12–25. doi: 10.11729/syltlx20150048

    WANG J P, ZHOU R, WU D. Progress of continuously rotating detonation engine research [J]. Journal of Experiments in Fluid Mechanics, 2015, 29(4): 12–25. doi: 10.11729/syltlx20150048
    [5]
    HISHIDA M, FUJIWARA T, WOLANSKI P. Fundamentals of rotating detonations [J]. Shock Waves, 2019, 19(1): 1–10. doi: 10.1007/s00193-008-0178-2
    [6]
    CONNOLLY-BOUTIN S, JOSEPH V, NG H D, et al. Small-size rotating detonation engine: scaling and minimum mass flow rate [J]. Shock Waves, 2021, 31(7): 665–674. doi: 10.1007/s00193-021-00991-2
    [7]
    BRAUN E M, DUNN N L, LU F K. Testing of a continuous detonation wave engine with swirled injection [C]//Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando: AIAA, 2010.
    [8]
    FALEMPIN F, DANIAU E. A contribution to the development of actual continuous detonation wave engine [C]//Proceedings of the 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Dayton: AIAA, 2008.
    [9]
    许爱国, 单奕铭, 陈锋, 等. 燃烧多相流的介尺度动理学建模研究进展 [J]. 航空学报, 2021, 42(12): 625842.

    XU A G, SHAN Y M, CHEN F, et al. Progress of mesoscale modeling and investigation of combustion multiphase flow [J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(12): 625842.
    [10]
    LIN C D, XU A G, ZHANG G C, et al. Double-distribution-function discrete Boltzmann model for combustion [J]. Combustion and Flame, 2016, 164: 137–151. doi: 10.1016/j.combustflame.2015.11.010
    [11]
    ZHANG Y D, XU A G, ZHANG G C, et al. Kinetic modeling of detonation and effects of negative temperature coefficient [J]. Combustion and Flame, 2016, 173: 483–492. doi: 10.1016/j.combustflame.2016.04.003
    [12]
    王健平, 张树杰, 姚松柏. 连续爆轰发动机的研究进展 [J]. 宇航总体技术, 2019, 3(2): 1–11, 25.

    WANG J P, ZHANG S J, YAO S B. Progress of continuous detonation engines [J]. Astronautical Systems Engineering Technology, 2019, 3(2): 1–11, 25.
    [13]
    王健平, 姚松柏. 连续爆轰发动机原理与技术 [M]. 北京: 科学出版社, 2018.
    [14]
    XIA Z J, SHENG Z H, SHEN D W, et al. Numerical investigation of pre-detonator in rotating detonation engine [J]. International Journal of Hydrogen Energy, 2021, 46(61): 31428–31438. doi: 10.1016/j.ijhydene.2021.07.013
    [15]
    褚驰, 翁春生, 武郁文, 等. 基于预爆轰点火方式的连续旋转爆轰发动机起爆过程分析 [J]. 弹道学报, 2021, 33(1): 1–10. doi: 10.12115/j.issn.1004-499X(2021)01-001

    CHU C, WENG C S, WU Y W, et al. Analysis of initiation process of continuous rotating detonation engine based on pre-detonation ignition [J]. Journal of Ballistics, 2021, 33(1): 1–10. doi: 10.12115/j.issn.1004-499X(2021)01-001
    [16]
    徐灿, 马虎, 严宇, 等. 旋转爆震发动机工作特性试验研究 [J]. 弹道学报, 2017, 29(3): 74–81. doi: 10.3969/j.issn.1004-499X.2017.03.013

    XU C, MA H, YAN Y, et al. Experimental study on operating characteristics of rotating detonation engine [J]. Journal of Ballistics, 2017, 29(3): 74–81. doi: 10.3969/j.issn.1004-499X.2017.03.013
    [17]
    KATTA V R, CHO K Y, HOKE J L, et al. Effect of increasing channel width on the structure of rotating detonation wave [J]. Proceedings of the Combustion Institute, 2019, 37(3): 3575–3583. doi: 10.1016/j.proci.2018.05.072
    [18]
    DING C W, WU Y W, XU G, et al. Effects of the oxygen mass fraction on the wave propagation modes in a kerosene-fueled rotating detonation combustor [J]. Acta Astronautica, 2022, 195: 204–214. doi: 10.1016/j.actaastro.2022.03.003
    [19]
    LI J, REN H L, NING J G. Numerical application of additive Runge-Kutta methods on detonation interaction with pipe bends [J]. International Journal of Hydrogen Energy, 2013, 38(21): 9016–9027. doi: 10.1016/j.ijhydene.2013.04.126
    [20]
    LI J, NING J G, ZHAO H, et al. Numerical investigation on the propagation mechanism of steady cellular detonations in curved channels [J]. Chinese Physics Letters, 2015, 32(4): 048202. doi: 10.1088/0256-307X/32/4/048202
    [21]
    THOMAS G O, WILLIAMS R L. Detonation interaction with wedges and bends [J]. Shock Waves, 2002, 11(6): 481–492. doi: 10.1007/s001930200133
    [22]
    DEITERDING R. Parallel adaptive simulation of multi-dimensional detonation structures [D]. Cottbus: Brandenburgische Technische Universität Cottbus, 2003.
    [23]
    王昌建, 徐胜利, 郭长铭. 气相爆轰波在半圆形弯管中传播现象的实验研究 [J]. 爆炸与冲击, 2003, 23(5): 448–453. doi: 10.3321/j.issn:1001-1455.2003.05.011

    WANG C J, XU S L, GUO C M. Experimental investigation on gaseous detonation propagation through a semi-circle bend tube [J]. Explosion and Shock Waves, 2003, 23(5): 448–453. doi: 10.3321/j.issn:1001-1455.2003.05.011
    [24]
    KUDO Y, NAGURA Y, KASAHARA J, et al. Oblique detonation waves stabilized in rectangular-cross-section bent tubes [J]. Proceedings of the Combustion Institute, 2011, 33(2): 2319–2326. doi: 10.1016/j.proci.2010.08.008
    [25]
    NAKAYAMA H, MORIYA T, KASAHARA J, et al. Stable detonation wave propagation in rectangular-cross-section curved channels [J]. Combustion and Flame, 2012, 159(2): 859–869. doi: 10.1016/j.combustflame.2011.07.022
    [26]
    SUGIYAMA Y, NAKAYAMA Y, MATSUO A, et al. Numerical investigations on detonation propagation in a two-dimensional curved channel [J]. Combustion Science and Technology, 2014, 186(10/11): 1662–1679. doi: 10.1080/00102202.2014.935621
    [27]
    齐骏, 潘振华, 张彭岗, 等. 弯管内连续旋转爆轰波传播模式实验研究 [J]. 工程热物理学报, 2017, 38(2): 435–439.

    QI J, PAN Z H, ZHANG P G, et al. Experimental study on the propagation mode of continuous rotating detonation through the bend [J]. Journal of Engineering Thermophysics, 2017, 38(2): 435–439.
    [28]
    YUAN X Q, ZHOU J, LIN Z Y, et al. Adaptive simulations of detonation propagation in 90-degree bent tubes [J]. International Journal of Hydrogen Energy, 2016, 41(40): 18259–18272. doi: 10.1016/j.ijhydene.2016.07.130
    [29]
    JESUTHASAN A. Near-limit propagation of detonations in annular channels [D]. Montreal: McGill University, 2011.
    [30]
    GAO Y, NG H D, LEE J H S. Near-limit propagation of gaseous detonations in narrow annular channels [J]. Shock Waves, 2017, 27(2): 199–207. doi: 10.1007/s00193-016-0639-y
    [31]
    NAGURA Y, KASAHARA J, MATSUO A. Multi-frame visualization for detonation wave diffraction [J]. Shock Waves, 2016, 26(5): 645–656. doi: 10.1007/s00193-016-0663-y
    [32]
    LEE J H S. The detonation phenomenon [M]. Cambridge: Cambridge University Press, 2008.
    [33]
    ZHANG B, KAMENSKIHS V, NG H D, et al. Direct blast initiation of spherical gaseous detonations in highly argon diluted mixtures [J]. Proceedings of the Combustion Institute, 2011, 33(2): 2265–2271. doi: 10.1016/j.proci.2010.06.165
    [34]
    NG H D, RADULESCU M I, HIGGINS A J, et al. Numerical investigation of the instability for one-dimensional Chapman-Jouguet detonations with chain-branching kinetics [J]. Combustion Theory and Modelling, 2005, 9(3): 385–401. doi: 10.1080/13647830500307758
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views(157) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return