Volume 37 Issue 1
Feb 2023
Turn off MathJax
Article Contents
XIE Guilan, SONG Muqing, GONG Shuguang, HOU Kun, ZUO Lilai, XIAO Fangyu. Numerical Simulation of Projectile Penetrating Double-Layer Plate Liquid-Filled Structure Based on Material Point Method[J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 015101. doi: 10.11858/gywlxb.20220602
Citation: XIE Guilan, SONG Muqing, GONG Shuguang, HOU Kun, ZUO Lilai, XIAO Fangyu. Numerical Simulation of Projectile Penetrating Double-Layer Plate Liquid-Filled Structure Based on Material Point Method[J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 015101. doi: 10.11858/gywlxb.20220602

Numerical Simulation of Projectile Penetrating Double-Layer Plate Liquid-Filled Structure Based on Material Point Method

doi: 10.11858/gywlxb.20220602
  • Received Date: 06 Jun 2022
  • Rev Recd Date: 05 Jul 2022
  • Available Online: 07 Feb 2023
  • Issue Publish Date: 05 Feb 2023
  • The double-layer plate air-container set in the liquid-filled structure can effectively reduce the harm caused by the hydrodynamic ram. In order to study the influence mechanism of the spacing and position of the double-layer plate on the hydrodynamic ram process, the numerical simulation of projectile penetration into the double-layer plate liquid-filled structure was carried out based on the material point method (MPM). The validity of the MPM numerical model is verified by experiments. The cavitation process, the residual velocity of projectile, the peak pressure of liquid at fixed points, the deformation of entry wall, exit wall and the double-layer plates were analyzed. The results show that with the increase of the spacing of the double-layer plate, the deformation of the liquid-filled structure shows a trend of first reducing and then increasing. The closer the position of the double-layer plate to the entry wall, the stronger the obstruction of the transmission of pressure shock wave, and the better the penetration resistance of the liquid-filled structure.

     

  • loading
  • [1]
    VARAS D, LÓPEZ-PUENTE J, ZAERA R. Experimental analysis of fluid-filled aluminium tubes subjected to high-velocity impact [J]. International Journal of Impact Engineering, 2009, 36(1): 81–91. doi: 10.1016/j.ijimpeng.2008.04.006
    [2]
    BALL R E . The fundamentals of aircraft combat survivability: analysis and design [M]. 2nd ed. Reston, VA: American Institute of Aeronautics and Astronautics, 2003: 799−864.
    [3]
    BALL R E. Aircraft fuel tank vulnerability to hydraulic ram: modification of the northrop finite element computer code BR-1 to include fluid-structure interaction; theory and user’s manual for BR-1HR: NPS-57BP74071 [R]. California: Naval Postgraduate School, 1974.
    [4]
    FUHS A E, BALL R E , POWER H L. FY 73 hydraulic ram studies: AD776536 [R]. California: Naval Postgraduate School, 1974.
    [5]
    LUNDSTROM E A. Hydraulic ram model for high explosive ammunition [C]//ASME Pressure Vessels and Piping Conference. Honolulu, HI, 1989.
    [6]
    李亚智, 陈钢. 充液箱体受弹丸撞击下动态响应的数值模拟[J]. 机械强度, 2007, 29(1): 5.

    LI Y Z, CHEN G. Numerical simulation of liquid-filled tank response to projectile impact [J]. Journal of Mechanical Strength, 2007, 29(1): 5.
    [7]
    VARAS D. Numerical modelling of the hydrodynamic ram phenomenon [J]. International Journal of Impact Engineering, 2009, 36(3): 363–374. doi: 10.1016/j.ijimpeng.2008.07.020
    [8]
    VARAS D, ZAERA R, LÓPEZ-PUENTE J. Numerical modelling of partially filled aircraft fuel tanks submitted to hydrodynamic ram [J]. Aerospace Science and Technology, 2012, 16(1): 19–28. doi: 10.1016/j.ast.2011.02.003
    [9]
    ARTERO-GUERRERO J A, VARAS D, PERNAS-SANCHEZ J, et al. Experimental analysis of an attenuation method for hydrodynamic ram effects [J]. Materials & Design, 2018, 155: 451–462.
    [10]
    张宇, 王彬文, 刘小川, 等. 充液格栅结构抗射弹冲击特性研究 [J]. 科学技术与工程, 2020, 20(18): 9.

    ZHANG Y, WANG B W, LIU X C, et al. Research on anti-projectile impact characteristics of liquid-filled grid structure [J]. Science Technology and Engineering, 2020, 20(18): 9.
    [11]
    李营, 赵鹏铎, 张春辉, 等. 空气夹层对含液结构在球形弹体侵彻作用下动态响应的影响 [J]. 振动与冲击, 2018, 37(3): 186–195. doi: 10.13465/j.cnki.jvs.2018.03.030

    LI Y, ZHAO P D, ZHANG C H, et al. Influences of air-contain structure on dynamic responses of liquid-filled structures under spherical projectile penetration [J]. Journal of Vibration and Shock, 2018, 37(3): 186–195. doi: 10.13465/j.cnki.jvs.2018.03.030
    [12]
    张雄. 物质点法 [M]. 北京: 清华大学出版社, 2013: 38−42.

    ZHANG X. Material point method [M]. Beijing: Tsinghua University Press, 2013: 38−42.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(2)

    Article Metrics

    Article views(117) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return