Volume 36 Issue 4
Jul 2022
Turn off MathJax
Article Contents
WANG Wenshuai, WANG Pengfei, TIAN Jie, XU Songlin. Penetration Mechanical Properties of Double-Layer Carbon Nanotube Films[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 044105. doi: 10.11858/gywlxb.20220508
Citation: WANG Wenshuai, WANG Pengfei, TIAN Jie, XU Songlin. Penetration Mechanical Properties of Double-Layer Carbon Nanotube Films[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 044105. doi: 10.11858/gywlxb.20220508

Penetration Mechanical Properties of Double-Layer Carbon Nanotube Films

doi: 10.11858/gywlxb.20220508
  • Received Date: 28 Jan 2022
  • Rev Recd Date: 07 Mar 2022
  • Accepted Date: 14 Mar 2022
  • Available Online: 27 Jul 2022
  • Issue Publish Date: 28 Jul 2022
  • Carbon nanotube (CNT) films have broad application prospects in the fields of artificial muscles, electronic shielding, and impact protection, owing to their excellent mechanical and electrical conductivity properties. However, the latest studies mainly focus on the quasi-static mechanical properties of the CNT films, while the transverse impact mechanical properties and microscopic mechanisms are still under investigated. Herein, the mechanical behavior of CNT films under medium/low-speed penetration is experimentally and numerically investigated. The results show that the critical penetration speed of the single-layer CNT film is about 25 m/s, while the speed of the maximum energy absorption is about 30 m/s, for a 1 mm diameter steel ball impacting the CNT film. In contrast, the critical penetration speed of the double-layer CNT film is about 40 m/s, and the speed of the maximum energy absorption is about 60 m/s. Under the quasi-static condition, the damaged edge of the cavity in the CNT film is thinner and the stretching deformation is more prominent than those in the impact case; the intermediate interface modification by water, oil, and high vacuum grease can improve the impact mechanical properties and energy absorption effect of the double-layer CNT film. Overall, this work can provide a better understanding on the penetration mechanism of CNT films and guide the design of anti-impact structures.

     

  • loading
  • [1]
    ZHANG M, FANG S L, ZAKHIDOV A A, et al. Strong, transparent, multifunctional, carbon nanotube sheets [J]. Science, 2005, 309(5738): 1215–1219. doi: 10.1126/science.1115311
    [2]
    XU J, LI Y B, XIANG Y, et al. A super energy mitigation nanostructure at high impact speed based on buckyball system [J]. Plos One, 2013, 8(5): e64697. doi: 10.1371/journal.pone.0064697
    [3]
    WIERZBICKI T. Energy absorption of structures and materials [J]. International Journal of Impact Engineering, 2004, 30(7): 881–882. doi: 10.1016/j.ijimpeng.2003.12.004
    [4]
    XIE B, LIU Y L, DING Y T, et al. Mechanics of carbon nanotube networks: microstructural evolution and optimal design [J]. Soft Matter, 2011, 7(21): 10039–10047. doi: 10.1039/c1sm06034a
    [5]
    ANZAR N, HASAN R, TYAGI M, et al. Carbon nanotube: a review on synthesis, properties and plethora of applications in the field of biomedical science [J]. Sensors International, 2020, 1: 10003. doi: 10.1016/j.sintl.2020.100003
    [6]
    JIANG K L, WANG J P, LI Q Q, et al. Superaligned carbon nanotube arrays, films, and yarns: a road to applications [J]. Advanced Materials, 2011, 23(9): 1154–1161. doi: 10.1002/adma.201003989
    [7]
    KAUSALA M, ZHANG L C. Energy absorption capacity of carbon nanotubes under ballistic impact [J]. Applied Physics Letters, 2006, 89(12): 123127. doi: 10.1063/1.2356325
    [8]
    PRABHA P S, RAGAI I G, RAJESH R, et al. FEA analysis of ballistic impact on carbon nanotube bulletproof vest [J]. Materials Today: Proceedings, 2021, 46: 3937–3940. doi: 10.1016/J.MATPR.2021.02.424
    [9]
    COUR-PALAIS B G, CREWS J L. A multi-shock concept for spacecraft shielding [J]. International Journal of Impact Engineering, 1990, 10(1): 135–146. doi: 10.1016/0734-743X(90)90054-Y
    [10]
    XIAO K L, LEI X D, CHEN Y Y, et al. Extraordinary impact resistance of carbon nanotube film with crosslinks under micro-ballistic impact [J]. Carbon, 2021, 175: 478–489. doi: 10.1016/j.carbon.2021.01.009
    [11]
    QU S X, JIANG X R, LI Q W, et al. Developing strong and tough carbon nanotube films by a proper dispersing strategy and enhanced interfacial interactions [J]. Carbon, 2019, 149: 117–124. doi: 10.1016/j.carbon.2019.04.033
    [12]
    KĘDZIERSKI P, POPŁAWSKI A, GIELETA R, et al. Experimental and numerical investigation of fabric impact behavior [J]. Composites Part B: Engineering, 2015, 69: 452–459. doi: 10.1016/j.compositesb.2014.10.028
    [13]
    SAKURAI S, KAMADA F, FUTABA D N, et al. Influence of lengths of millimeter-scale single-walled carbon nanotube on electrical and mechanical properties of buckypaper [J]. Nanoscale Research Letters, 2013, 8(1): 546. doi: 10.1186/1556-276X-8-546
    [14]
    MA Y J, YAO X F, ZHENG Q S, et al. Carbon nanotube films change Poisson’s ratios from negative to positive [J]. Applied Physics Letter. 2010, 97(6): 061909.
    [15]
    WANG P F, YANG J L, LI X, et al. Modification of the contact surfaces for improving the puncture resistance of laminar structures [J]. Scientific Reports, 2017, 7(1): 16615. doi: 10.1038/s41598-017-06007-3
    [16]
    WANG P F, ZHANG X, ZHANG H, et al. Energy absorption mechanisms of modified double-aluminum layers under low-velocity impact [J]. International Journal of Applied Mechanics, 2015, 7(6): 1550086. doi: 10.1142/S1758825115500866
    [17]
    常晋源, 王德雅, 张磊, 等. 单丝碳纳米管纤维的横向冲击性能研究 [J]. 实验力学, 2021, 36(4): 507–515. doi: 10.7520/1001-4888-20-250

    CHANG J Y, WANG D Y, ZHANG L, et al. Transverse impact properties of single carbon nanotube fibers [J]. Journal of Experimental Mechanics, 2021, 36(4): 507–515. doi: 10.7520/1001-4888-20-250
    [18]
    DONG J L, SONG X, WANG Z J, et al. Impact resistance of single-layer metallic glass nanofilms to high-velocity micro-particle penetration [J]. Extreme Mechanics Letters, 2021, 44: 101258. doi: 10.1016/j.eml.2021.101258
    [19]
    TANG F, DONG C, YANG Z, et al. Protective performance and dynamic behavior of composite body armor with shear stiffening gel as buffer material under ballistic impact [J]. Composites Science and Technology, 2022, 218: 109190. doi: 10.1016/j.compscitech.2021.109190
    [20]
    XUAN H J, HU Y Q, WU Y N, et al. Containment ability of Kevlar 49 composite case under spinning impact [J]. Journal of Aerospace Engineering, 2018, 31(2): 04017096. doi: 10.1061/(ASCE)AS.1943-5525.0000806
    [21]
    LIU L L, ZHAO Z H, CHEN W, et al. Influence of pre-tension on ballistic impact performance of multi-layer Kevlar 49 woven fabrics for gas turbine engine containment systems [J]. Chinese Journal of Aeronautics, 2018, 31(6): 1273–1286. doi: 10.1016/j.cja.2018.03.021
    [22]
    WANG Y Q, MIAO Y Y, SWENSON D, et al. Digital element approach for simulating impact and penetration of textiles [J]. International Journal of Impact Engineering, 2010, 37(5): 552–560. doi: 10.1016/j.ijimpeng.2009.10.009
    [23]
    LIU L L, CAI M, LUO G, et al. Macroscopic numerical simulation method of multi-phase STF-impregnated Kevlar fabrics. part 2: material model and numerical simulation [J]. Composite Structures, 2021, 262: 113662. doi: 10.1016/j.compstruct.2021.113662
    [24]
    李清文, 赵静娜, 张骁骅. 碳纳米管纤维的物理性能与宏量制备及其应用 [J]. 纺织学报, 2018, 39(12): 145–151. doi: 10.13475/j.fzxb.20180806607

    LI Q W, ZHAO J N, ZHANG X H. Physical properties and mass preparation and application of carbon nanotube fibers [J]. Journal of Textile Research, 2018, 39(12): 145–151. doi: 10.13475/j.fzxb.20180806607
    [25]
    吴昆杰, 张永毅, 勇振中, 等. 碳纳米管纤维的连续制备及高性能化 [J/OL]. 物理化学学报, 2021: 1−25. (2021−01−17) [2021−12−01]. http://kns.cnki.net/kcms/detail/11.1892.o6.20210803.1027.002.html.

    WU K J, ZHANG Y Y, YONG Z Z, et al. Continuous preparation and performance enhancement techniques of carbon nanotube fibers [J/OL]. Acta Physico-Chimica Sinica, 2021: 1−25. (2021−01−17) [2021−12−01]. http://kns.cnki.net/kcms/detail/11.1892.o6.20210803.1027.002.html.
    [26]
    WANG J N, LUO X G, WU T, et al. High-strength carbon nanotube fibre-like ribbon with high ductility and high electrical conductivity [J]. Nature Communications, 2014, 5(1): 3848. doi: 10.1038/ncomms4848
    [27]
    RYU S, CHOU J B, LEE K et al. Direct insulation-to-conduction transformation of adhesive catecholamine for simultaneous increases of electrical conductivity and mechanical strength of CNT fibers [J]. Advanced Materials, 2015, 27(21): 3250–3255. doi: 10.1002/adma.201570141
    [28]
    CHEN W, HUDSPETH M, GUO Z, et al. Multi-scale experiments on soft body armors under projectile normal impact [J]. International Journal of Impact Engineering, 2017, 108: 63–72. doi: 10.1016/j.ijimpeng.2017.04.018
    [29]
    HAN B S, XUE XIANG, XU Y J, et al. Preparation of carbon nanotube film with high alignment and elevated density [J]. Carbon, 2017, 122: 496–503. doi: 10.1016/j.carbon.2017.04.072
    [30]
    XU W, CHEN Y, ZHAN H, et al. High-strength carbon nanotube film from improving alignment and densification [J]. Nano Letters, 2016(2), 16: 946−952.
    [31]
    ZHAO Y S, MIAO L L, HAO W Z, et al. Two-dimensional carbon nanotube woven highly-stretchable film with strain-induced tunable impacting performance [J]. Carbon, 2022, 189: 539–547. doi: 10.1016/j.carbon.2021.12.065
    [32]
    WANG Y, GAO Y N, YUE T N, et al. Achieving high-performance and tunable microwave shielding in multi-walled carbon nanotubes/polydimethylsiloxane composites containing liquid metals [J]. Applied Surface Science, 2021, 563: 105255. doi: 10.1016/J.APSUSC.2021.150255
    [33]
    ZHANG L C, KAUSALA M, XIAO K Q. The intrinsic frictional property of carbon nanotubes [J]. Advanced Materials Research, 2008, 32: 1–4. doi: 10.4028/www.scientific.net/AMR.32.1
    [34]
    胡东梅, 黄献聪, 李丹, 等. 碳纳米管薄膜/超高分子量聚乙烯叠层材料的防弹性能 [J]. 东华大学学报(自然科学版), 2018, 44(3): 341–346. doi: 10.3969/j.issn.1671-0444.2018.03.001

    HU D M, HUANG X C, LI D, et al. Bulletproof performance of carbon nanotube film/UHMWPE with multi-layer structure [J]. Journal of Donghua University (Natural Science), 2018, 44(3): 341–346. doi: 10.3969/j.issn.1671-0444.2018.03.001
    [35]
    HASHIN Z. Failure criteria for unidirectional fiber composites [J]. Journal of Applied Mechanics, 1980, 47(2): 329–334. doi: 10.1115/1.3153664
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(3)

    Article Metrics

    Article views(313) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return