Research on the Shockless Compression ofthe Solid Liner Implosion
-
摘要: Z箍缩上的套筒准等熵压缩技术可以用来研究材料的高压状态方程。通过MDSC磁流体力学程序,以铝为负载材料,对PTS shot37负载电流进行非冲击压缩负载设计。结果显示,在原始电流下,没有合适的铝套筒尺寸可以实现非冲击压缩; 对原始电流进行波形调节, 将电流上升时间调为202和303ns后,获得了满足非冲击压缩条件的套筒尺寸范围。当电流上升时间为303ns时,半径为2.5mm,厚度为0.6mm的套筒尺寸在电流最大时刻,保留固相的厚度为0.12mm,此时固相最大压力为63GPa,最大内爆速度为15km/s。Abstract: The quasi-isentropic compression technique of the liner in the Z-pinch can be used to study high pressure state equations of materials.In this research, we designed the quasi-isentropic compression load for PTS shot37 load currents through the MDSC magnetohydrodynamic code, with Al being the load material.The results show that it is impossible to find an appropriate liner for quasi-isentropic compression under the original current pulse, but it is possible under the shaped currents.When the current increasing time is 303ns, the liner with a radius of 2.5mm and a thickness of 0.6mm gets the maximal pressure (63GPa) and implosion speed (15km/s) when the current reaches its maximum, while the remaining solid liner is 0.12mm thick.
-
Key words:
- Z-pinch /
- solid liner /
- shockless compression /
- shock wave /
- magnetic diffusion
-
图 12 铝的熔化线及其与t=300ns时刻套筒剖面的压力-温度关系对比
Figure 12. Comparison between the theoretical melting line[17] of Al and the liners radial p-T relation at t=300ns
表 1 原始负载电流下的计算结果
Table 1. Calculation results with initial load current
No. d/(mm) R/(mm) τr/(ns) tdiff/(ns) tD/(ns) 1 0.60 3.0 101 189 100 2 0.60 2.5 101 169 76 3 0.50 2.5 101 95 87 4 0.50 2.8 101 96 89 5 0.40 3.0 101 119 95 6 0.40 2.7 101 115 83 7 0.40 2.5 101 106 79 8 0.35 2.5 101 93 — 9 0.35 2.7 101 97 — 10 0.33 3.3 101 99 — 11 0.30 2.0 101 80 — 12 0.30 2.5 101 86 — 13 0.30 3.0 101 92 — 14 0.20 2.8 101 96 — 15 0.20 2.0 101 54 — 表 2 电流整形之后的计算结果
Table 2. Calculation results with shaped load current
No. d/(mm) R/(mm) τr/(ns) tdiff/(ns) tD/(ns) tA/(ns) 1 0.40 2.6 202 175 — — 2 0.40 2.5 202 162 — — 3 0.50 2.5 202 201 — — 4 0.60 2.5 202 245 — 261 5 0.70 2.5 202 264 160 — 6 0.30 3.0 303 179 — — 7 0.35 3.0 303 212 — 341 8 0.45 3.0 303 247 — 370 9 0.48 2.5 303 246 — 319 10 0.50 2.5 303 256 — 320 11 0.52 2.5 303 285 — 322 12 0.54 2.5 303 295 — 323 13 0.56 2.5 303 307 — 324 14 0.58 2.5 303 300 — 325 15 0.60 2.5 303 313 — 326 16 0.90 2.5 303 — — 331 17 0.58 2.8 303 308 — 362 18 0.60 2.6 303 323 — 339 19 0.60 2.7 303 326 — 352 20 0.60 2.8 303 329 — 365 21 0.60 2.9 303 331 — 378 22 0.60 3.0 303 332 — 391 23 0.60 3.1 303 335 — 404 24 0.60 3.6 303 366 — 475 -
[1] SAVAGE M, BENNETT L, BLISS D, et al.An overview of pulse compression and power flow in the upgraded Z pulsed power driver[C]//2007 IEEE Pulsed Power Plasma Science Conference.Albuquerque, NM: IEEE, 2007: 979-984. https://www.researchgate.net/publication/224340794_An_Overview_of_Pulse_Compression_and_Power_Flow_in_the_Upgraded_Z_Pulsed_Power_Driver [2] MATZEN M K, SWEENEY M A, ADAMS R G, et al.Pulsed-power-driven high energy density physics and inertial confinement fusion research[J].Phys Plasmas, 2005, 12(5):055503. doi: 10.1063/1.1891746 [3] SINARS D B, SLUTZ S A, HERRMANN M C, et al.Measurements of magneto-Rayleigh-Taylor instability growth during the implosion of initially solid metal liners[J].Phys Plasmas, 2011, 18(5):056301. doi: 10.1063/1.3560911 [4] SLUTZ S A, HERRMANN M C, VESEY R A, et al.Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field[J].Phys Plasmas, 2010, 17:056303. doi: 10.1063/1.3333505 [5] SLUTZ S A, VESEY R A.High-gain magnetized inertial fusion[J].Phys Rev Lett, 2012, 108:025003. doi: 10.1103/PhysRevLett.108.025003 [6] MATZEN M K, ATHERTON B W, CUNEO M E.The refurbished Z facility:capabilities and recent experiments[J].Acta Phys Pol A, 2009, 115(6):956-958. doi: 10.12693/APhysPolA.115.956 [7] ROSE D V, WELCH D R, MADRID E A, et al.Three-dimensional electromagnetic model of the pulsed-power Z-pinch accelerator[J].Phys Rev ST Accel Beams, 2010, 13(1):010402. doi: 10.1103/PhysRevSTAB.13.010402 [8] MCBRIDE R D, MARTIN M R, LEMKE R W, et al.Beryllium liner implosion experiments on the Z accelerator in preparation for magnetized liner inertial fusion[J].Phys Plasmas, 2013, 20(5):056309. doi: 10.1063/1.4803079 [9] 阚明先, 胡熙静, 王刚华.二维磁流体力学ALE数值模拟[J].高能量密度物理, 2009(2):56-60. http://www.cqvip.com/Main/Detail.aspx?id=30778709KAN M X, HU X J, WANG G H.Two dimensional MHD ALE numerical simulation[J].High Energy Density Physics, 2009(2):56-60. http://www.cqvip.com/Main/Detail.aspx?id=30778709 [10] 阚明先, 蒋吉昊, 王刚华.衬套内爆ALE方法二维MHD数值模拟[J].四川大学报(自然科学版), 2007, 44(1):91-96. http://d.old.wanfangdata.com.cn/Periodical/scdxxb200701020KAN M X, JIANG J H, WANG G H.ALE simulation of 2D MHD for liner[J].Journal of Sichuan University (Natural Science Edition), 2007, 44(1):91-96. http://d.old.wanfangdata.com.cn/Periodical/scdxxb200701020 [11] 阚明先, 王刚华, 赵海龙.金属电阻率模型[J].爆炸与冲击, 2013, 33(3):282-286. doi: 10.3969/j.issn.1001-1455.2013.03.010KAN M X, WANG G H, ZHAO H L.Electrical resistivity model for metals[J].Explosion and Shock Waves, 2013, 33(3):282-286. doi: 10.3969/j.issn.1001-1455.2013.03.010 [12] 王刚华, 胡熙静, 孙承纬.双层钨衬套Z箍缩内爆数值模拟[J].高压物理学报, 2004, 18(4):364-367. doi: 10.3969/j.issn.1000-5773.2004.04.013WANG G H, HU X J, SUN C W.Simulation of magneto hydrodynamics for plasma jetting on wire pinch[J].Chinese Journal of High Pressure Physics, 2004, 18(4):364-367. doi: 10.3969/j.issn.1000-5773.2004.04.013 [13] 阚明先, 王刚华, 赵海龙.磁驱动飞片二维磁流体力学数值模拟[J].强激光与电子束, 2013, 25(8):2137-2140. http://d.old.wanfangdata.com.cn/Periodical/qjgylzs201308052KAN M X, WANG G H, ZHAO H L.Two-dimensional magneto-hydrodynamic simulations of magnetically accelerated flyer plates[J].High Power Laser and Particle Beams, 2013, 25(8):2137-2140. http://d.old.wanfangdata.com.cn/Periodical/qjgylzs201308052 [14] 王刚华, 孙承纬, 赵剑衡.磁驱动平面飞片的一维磁流体力学计算[J].爆炸与冲击, 2008, 28(3):261-264. doi: 10.3321/j.issn:1001-1455.2008.03.011WANG G H, SUN C W, ZHAO J H.One-dimensional, magneto hydrodynamic simulations of magnetically driven flyer plates[J].Explosion and Shock Waves, 2008, 28(3):261-264. doi: 10.3321/j.issn:1001-1455.2008.03.011 [15] 孙承纬.磁驱动等熵压缩和高速飞片的实验技术[J].爆轰波与冲击波, 2005, 3(9):125-138. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200502793338SUN C W.Research on magnetically driven isentropic compression and high speed flyer plates[J].Detonation and Shock Wave, 2005, 3(9):125-138. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200502793338 [16] RYUTOV D D, DERZON M S, MATZEN M K.The physics of fast Z pinches[J].Rev Mod Phys, 2000, 72(1):167-223. doi: 10.1103/RevModPhys.72.167 [17] ALFE D, VOADLO L, PRICE G D, et al.Melting curve of materials:theory versus experimets[J].J Phys Condens Matter, 2004, 16:S973-S982. doi: 10.1088/0953-8984/16/14/006 -