Initial Study on Constitutive Model of PBXs via Viscoelastic StatisticalCrack Mechanics Including Anisotropic Damage
-
摘要: 建立含损伤本构模型是研究炸药动态力学响应规律的基础。基于PBX炸药材料的宏观黏弹性特征和细观上微裂纹面的方向性,建立了含各向异性损伤的黏弹性统计微裂纹(Aniso-Visco SCRAM)本构模型, 简化后得到单轴应力加载下的本构方程。利用数值计算程序,以PBX9501为例,分析了微裂纹扩展的各向异性、PBX炸药破坏强度及临界应变的拉压异性和应变率相关性,考察了微裂纹数密度、初始微裂纹尺寸、微裂纹面摩擦系数及断裂表面能4个主要参数的敏感性及影响规律。结果表明,它们对微裂纹的扩展演化有较大影响,进而导致材料表现出不同的力学响应。
-
关键词:
- PBX炸药 /
- 各向异性损伤 /
- 黏弹性统计微裂纹本构模型 /
- 单轴加载
Abstract: Building constitutive models that include damage is the foundation for the research of dynamic mechanical responses of explosives.Based on the viscoelastic character on macroscale and the crack directions on mesoscale, we established a viscoelastic statistical crack mechanics including anisotropic damage, and then obtained the simplified constitutive model under uniaxial loading.By using a numerical program, and taking PBX9501 as an example, we analyzed the extension rules of cracks with various directions, and the strength-difference and strain-rate dependence of failure strength and critical strain of explosives.Furthermore, we discussed the sensitivity of 4 main parameters, the crack number density, the initial crack size, the friction coefficient between crack surfaces and the fracture surface energy.The result demonstrates that the 4 parameters greatly affect the extension and evolvement of cracks, which causes the different mechanical responses of explosives.-
Key words:
- PBX explosive /
- anisotropic damage /
- visco statistical crack mechanics /
- uniaxial loading
-
表 1 Aniso-Visco SCRAM模型输入参数
Table 1. Constitutive model parameters for Aniso-Visco SCRAM
Density/(g/cm3) G/(GPa) μ ν c0/(μm) cR/(m/s) N0/(cm-3) m γ/(J/m2) 1.86 3.235 0.5 0.3 30 300 45* 10 0.5* G(1)/(GPa) G(2)/(GPa) G(3)/(GPa) G(4)/(GPa) G(5)/(GPa) 0.9440 0.1738 0.5212 0.9085 0.6875 [1/τ(1)]/(μs-1) [1/τ(2)]/(μs-1) [1/τ(3)]/(μs-1) [1/τ(4)]/(μs-1) [1/τ(5)]/(μs-1) 0 0.00732 0.0732 0.732 2.0 Note:(1)c0 is the initial crack size;(2)Values with subscript “*” are dedicated to this study. -
[1] DIENES J K.A statistical theory of fragmentation[C]//Proceedings of the 19th US Symposium on Rock Mechanics.Reno, Nevada: University of Nevada, 1978: 51-55. [2] DIENES J K, ZUO Q H, KERSHNER J D.Impact initiation of explosives and propellants via statistical crack mechanics[J].J Mech Phys Solids, 2006, 54(6):1237-1275. doi: 10.1016/j.jmps.2005.12.001 [3] BENNETT J G, HABERMAN K S, JOHNSON J N, et al.A constitutive model for the non-shock ignition and mechanical response of high explosives[J].J Mech Phys Solids, 1998, 46(12):2303-2322. doi: 10.1016/S0022-5096(98)00011-8 [4] HACKETT R M, BENNETT J G.An implicit finite element material model for energetic particulate composite materials[J].Int J Numer Meth Eng, 2000, 49(9):1191-1209. doi: 10.1002/(ISSN)1097-0207 [5] ADDESSIO F L, JOHNSON J N.A constitutive model for the dynamic response of brittle materials[J].J Appl Phys, 1990, 67(7):3275-3286. doi: 10.1063/1.346090 [6] ZUO Q H, ADDESSIO F L, DIENES J K, et al.A rate-dependent damage model for brittle materials based on the dominant crack[J].Int J Solids Struc, 2006, 43(11):3350-3380. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f12afa557e18fa52561b3a04cec743f0 [7] 王礼立.应力波基础[M].北京:国防工业出版社, 2005:148-151.WANG L L.Foundation of stress waves[M].Beijing:National Defense Industry Press, 2005:148-151. [8] 叶敬棠, 柳兆荣, 许世雄, 等.流体力学[M].上海:复旦大学出版社, 1989:375-379.YE J T, LIU Z R, XE S X, et al.Fluid mechnics[M].Shanghai:Fudan University Press, 1989:375-379. [9] SEAMAN L, CURRAN D R, SHOCKEY D A.Computational models for ductile and brittle fracture[J].J Appl Phys, 1976, 47(11):4811-4826. doi: 10.1063/1.322523 [10] EVANS A G.Slow crack growth in brittle materials under dynamic loading conditions[J].Int J Fract, 1974, 10(2):251-259. doi: 10.1007/BF00113930 [11] FREUND L B.Dynamic fracture mechanics[M].Cambridge:Cambridge University Press, 1993. [12] RICE J R.Comments on "on the stablility of shear cracks and the calculation of compressive strength" [J].J Geophys Res, 1984, 89(B4):2505-2507. doi: 10.1029/JB089iB04p02505 [13] KEER L M.A note on shear and combined loading for penny-shaped crack[J].J Mech Phys Solids, 1966, 14(1):1-6. doi: 10.1016/0022-5096(66)90014-7 [14] 陈鹏万, 黄风雷.含能材料损伤理论及应用[M].北京:北京理工大学出版社, 2006:25-30.CHEN P W, HUANG F L.Damage theories and applications of energetic materials[M].Beijing:Beijing Institute of Technology Press, 2006:25-30. [15] GRAY G T Ⅲ, IDAR D J, BLUMENTHAL W R, et al.High-and low-strain rate compression properties of several energetic material composites as a function of strain rate and temperature[C]//The 11th International Detonation Symposium.Snowmass, Colorado: Los Alamos National Lab, 1998: 76-84. [16] 赵玉刚, 傅华, 李俊玲, 等.三种PBX炸药的动态拉伸力学性能[J].含能材料, 2011, 19(2):194-199. doi: 10.3969/j.issn.1006-9941.2011.02.016ZHAO Y G, FU H, LI J L, et al.Dynamic tensile mechanical properties of three types of PBX[J].Chinese Journal of Energetic Materials, 2011, 19(2):194-199. doi: 10.3969/j.issn.1006-9941.2011.02.016 -