Experimental Investigation on the Concrete Damage Behaviorunder the Shaped-Charge Loading
-
摘要: 聚能装药侵彻混凝土靶板的研究主要集中在聚能装药的材料、结构、侵彻深度和侵彻孔径大小方面,少有涉及整个混凝土靶板的破坏行为, 但混凝土靶的整体破坏行为对整个聚能装药的侵彻毁伤效能评估有至关重要的作用。为更好地判定聚能装药对混凝土靶体的破坏程度,开展了大口径聚能装药侵彻大尺寸混凝土靶的实验研究。对实验后的混凝土靶板进行剖切,从混凝土靶的内部剖切面观测不同位置处混凝土靶的损伤程度,并对各个位置处的孔洞直径进行测量,获取孔洞的完整尺寸。在过孔洞中心的同一截面上切割边长为10cm的标准混凝土试件,并对其进行抗压强度测试,根据测试结果评估混凝土靶板的整体破坏行为,进而得到混凝土靶在聚能装药载荷下的破坏行为。测试结果表明,混凝土靶板的背板拉伸破坏半径约为110cm;以孔洞中心为轴,半径小于100cm内的混凝土损伤较严重,边界块体强度约为原始强度的40%;半径在100~140cm范围内混凝土的损伤不大,混凝土试件的强度约为原始强度的72%;当半径大于140cm后,聚能装药对混凝土的影响较弱,混凝土几乎未出现损伤。Abstract: The research of shaped-charge penetrating concrete target focuses on the material and the structure of the shaped-charge, penetration depth and penetration aperture size, but seldom involves the destruction of a concrete target board.However, the determination of whose overall damage behavior plays a significant role in the penetration effectiveness evaluation of the shaped-charge on the concrete.In the present work, to make up for this defect, we carried out experiments of the heavy-caliber shaped-charges penetrating a large-size concrete target.After the experiment, we cut the concrete target to assess its damage under the shaped-charge loading.We evaluated the concrete target damage at different locations from inside the target and measured the hole diameters at different locations.Cube concrete specimens with a side length of 10cm were also obtained in the same damaged section across the hole center.The strength test results show that the reflective stretching damage radius is about 110cm; the concrete damage is severe within a 100cm radius, and the compressive strength of the concrete specimen at the border within this radius range is about 30MPa, which is about 40% of the original compressive strength; the compressive strengths of the concrete specimens within the scope of the radius 100-140cm are similar and are all around 46MPa, which is about 72% of the original compressive strength; when the radius is larger than 140 cm, the concrete damage is negligible.
-
Key words:
- shaped-charge penetration /
- concrete /
- strength test /
- explosion and impact
-
表 1 炸药的材料参数
Table 1. Material parameters of the explosive composition B
Density/(g/cm3) Detonation velocity/(m/s) C-J pressure/(GPa) Initialinternal energy/(J/g) 1.67 7980 29.5 0.085 表 2 药型罩的材料参数
Table 2. Material parameters of the linear
Density/(g/cm3) Elasticmodulus/(GPa) Yieldstrength/(MPa) Possion'sratio 7.806 210 275 0.3 表 3 混凝土材料强度测试结果
Table 3. Concrete material strength test results
Test No. Compressive strength/(MPa) 1# 69.4 2# 70.3 3# 68.6 表 4 强度测试结果
Table 4. Comprehensive strength test results
Group H/(cm) Concretespecimen label Compressivestrength/(MPa) T-1 15 B-31 21.2 B-32 37.1 C-41 46.6 C-42 53.4 T-2 55 B-11 36.5 B-12 44.1 C-31 46.1 C-32 55.1 C-33 57.7 T-3 105 B-21 40.9 B-22 49.0 C-21 59.3 T-4 155 C-01 46.8 C-11 59.3 C-12 66.8 T-5 195 B-01 26.5 B-02 31.8 B-03 53.7 C-51 68.4 C-52 71.5 -
[1] 宁建国, 商霖, 孙远翔.混凝土材料动态性能的经验公式, 强度理论与唯象本构模型[J].力学进展, 2006, 36(3):389-405. doi: 10.3321/j.issn:1000-0992.2006.03.006NING J G, SHANG L, SUN Y X.The experience formula of the dynamic performance of concrete materials, strength theory and the phenomenological constitutive model[J].Advances in Mechanics, 2006, 36(3):389-405. doi: 10.3321/j.issn:1000-0992.2006.03.006 [2] BISCHOFF P H, PERRY S H.Impact behavior of plain concrete loaded in uniaxial compression[J].J Eng Mech-Asce, 1995, 121(7):685-693. doi: 10.1061-(ASCE)0733-9399(1995)121-6(685)/ [3] 张磊, 胡时胜, 梁宗宪.利用拉氏分析研究冲击载荷下混凝土应力-应变关系[J].工程力学, 2005, 22(4):163-166. doi: 10.3969/j.issn.1000-4750.2005.04.030ZHANG L, HU S S, LIANG Z X.Under the impact load are studied by using the Laplace analysis of concrete stress-strain relationship[J].Engineering Mechanics, 2005, 22(4):163-166. doi: 10.3969/j.issn.1000-4750.2005.04.030 [4] HELD M, KOZHUSHKO A A.Radial crater growing process in different materials with shaped charge jets[J].Propell Explos Pyrot, 1999, 24(6):339-342. doi: 10.1002/(ISSN)1521-4087 [5] 王静, 王成, 宁建国.射流侵彻混凝土靶的靶体阻力计算模型与数值模拟研究[J].兵工学报, 2008, 29(12):1409-1416. doi: 10.3321/j.issn:1000-1093.2008.12.001WANG J, WANG C, NING J G.Theoretical model for the calculation of concrete target resistance and numerical simulation of penetration by shaped charge jets[J].Acta Armamentarii, 2008, 29(12):1409-1416. doi: 10.3321/j.issn:1000-1093.2008.12.001 [6] 王辉.聚能装药侵彻混凝土介质效应研究[D].北京: 北京理工大学, 1997.WANG H.Shaped charge penetrating concrete medium effect research[D].Beijing: Beijing Institute of Technology, 1997. [7] 段卓平, 温丽晶, 张连生, 等.聚能装药的多点环形起爆器性能测试及其应用[J].爆炸与冲击, 2011, 30(6):664-668. http://d.old.wanfangdata.com.cn/Periodical/bzycj201006017DUAN Z P, WEN L J, ZHANG L S, et al.Some ring shaped charge blasting performance tests and application[J].Explosion and Shock Waves, 2011, 30(6):664-668. http://d.old.wanfangdata.com.cn/Periodical/bzycj201006017 [8] MURPHY M J.Shaped charge penetration in concrete: a unmed approach: UCRL-53393[R].California: Lawrence Livermore National Laboratory, 1983. [9] MURPHY M J, KUKLO R M.Fundamentals of shaped charge penetration in concrete[C]//Proceeding of the 18th International Symposium on Ballistics.Lancaster, Pennsylvania, 1999: 1057-1064. [10] 黄风雷, 张雷雷, 段卓平.大锥角药型罩聚能装药侵彻混凝土实验研究[J].爆炸与冲击, 2008, 28(1):17-22. doi: 10.3321/j.issn:1001-1455.2008.01.003HUANG F L, ZHANG L L, DUAN Z P.Big cone angle type medicine cover shaped charge penetration concrete experiment[J].Explosion and Shock Waves, 2008, 28(1):17-22. doi: 10.3321/j.issn:1001-1455.2008.01.003 [11] MA T B, WANG C.Numerical simulation and experimental investigation of shaped charge jet[J].Int J Nonlinear Sci Numer Simul, 2010, 11(Suppl):225-229. http://en.cnki.com.cn/Article_en/CJFDTotal-DJZD201003021.htm [12] WANG C, MA T B, NING J G.Experimental investigation of penetration performance of shaped charge into concrete targets[J].Acta Mech Sinica-Prc, 2008, 24(3):345-349. doi: 10.1007/s10409-008-0160-3 [13] EICHELBERGER R J.Experimental test of the theory of penetration by metallic jets[J].J Appl Phys, 1956, 27(1):63-68. doi: 10.1063/1.1722198 [14] ABRAHAMSON G R, GOODIER J N.Penetration by shaped-charge jets of nonuniform velocity[J].J Appl Phys, 1963, 34(1):195-199. doi: 10.1063/1.1729065 [15] ORPHAL D L.Phase three penetration[J].Int J Impact Eng, 1997, 20(6):601-616. http://d.old.wanfangdata.com.cn/Periodical/dlxtzdh201613003 [16] XIAO Q Q, HUANG Z X, ZU X D, et al.Penetration research of jacketed jet into concrete[J].Int J Impact Eng, 2013, 54:246-253. doi: 10.1016/j.ijimpeng.2012.10.003 [17] WILLIAM P W, FLIS W J, CHOU P C.A survey of shaped-charge jet penetration models[J].Int J Impact Eng, 1988, 7(3):307-325. doi: 10.1016/0734-743X(88)90032-2 [18] 许香照, 马天宝, 宁建国.聚能装药侵彻混凝土数值模拟[J].计算机辅助工程, 2015, 24(2):29-35. http://d.old.wanfangdata.com.cn/Periodical/jsjfzgc201502006XU X Z, MA T B, NING J G.Shaped charge penetrating concrete numerical simulation[J].Computer Aided Engineering, 2015, 24(2):29-35. http://d.old.wanfangdata.com.cn/Periodical/jsjfzgc201502006 [19] 许香照, 马天宝, 郝莉.大口径聚能装药侵彻厚混凝土靶板的数值模拟及实验研究[J].中国科学:技术科学, 2016, 46:1-10. http://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201604003.htmXU X Z, MA T B, HAO L.Experimental and numerical investigation heavy-calibe shaped-charge penetration in thick concrete target[J].Scientia Sinica Technologica, 2016, 46:1-10. http://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201604003.htm -