ANPyO@PDA复合材料的制备、表征及热分解性能

张功震 何志伟 冉宪文 程维 汪扬文 李志远 张贺

张功震, 何志伟, 冉宪文, 程维, 汪扬文, 李志远, 张贺. ANPyO@PDA复合材料的制备、表征及热分解性能[J]. 高压物理学报, 2023, 37(6): 063402. doi: 10.11858/gywlxb.20230697
引用本文: 张功震, 何志伟, 冉宪文, 程维, 汪扬文, 李志远, 张贺. ANPyO@PDA复合材料的制备、表征及热分解性能[J]. 高压物理学报, 2023, 37(6): 063402. doi: 10.11858/gywlxb.20230697
ZHANG Gongzhen, HE Zhiwei, RAN Xianwen, CHENG Wei, WANG Yangwen, LI Zhiyuan, ZHANG He. Preparation, Characterization and Thermal Decomposition Properties of ANPyO@PDA Composites[J]. Chinese Journal of High Pressure Physics, 2023, 37(6): 063402. doi: 10.11858/gywlxb.20230697
Citation: ZHANG Gongzhen, HE Zhiwei, RAN Xianwen, CHENG Wei, WANG Yangwen, LI Zhiyuan, ZHANG He. Preparation, Characterization and Thermal Decomposition Properties of ANPyO@PDA Composites[J]. Chinese Journal of High Pressure Physics, 2023, 37(6): 063402. doi: 10.11858/gywlxb.20230697

ANPyO@PDA复合材料的制备、表征及热分解性能

doi: 10.11858/gywlxb.20230697
基金项目: 国家自然科学基金(51404006)
详细信息
    作者简介:

    张功震(1994-),男,硕士研究生,主要从事含能材料性能研究. E-mail:2241953568@qq.com

    通讯作者:

    何志伟(1979-),男,博士,副教授,主要从事含能材料及其配方性能研究. E-mail:751601138@qq.com

  • 中图分类号: O342; TJ55

Preparation, Characterization and Thermal Decomposition Properties of ANPyO@PDA Composites

  • 摘要: 为了提高2,6-二氨基-3,5-二硝基吡啶氧化物(ANPyO)的热稳定性,基于多巴胺氧化自聚合原理,采用原位聚合法将聚多巴胺(polydopamine,PDA)包覆在ANPyO晶体表面,通过调节反应时间,制备了不同包覆率的ANPyO@PDA核壳型复合材料。采用扫描电子显微镜、X射线衍射仪、傅里叶变换红外光谱仪、X射线光电子能谱仪对其形貌、晶体结构、分子结构和元素含量进行了表征,采用热重-差示扫描量热仪测试了ANPyO@PDA复合材料的热分解性能。结果表明:PDA在ANPyO表面形成均匀致密的涂层;PDA包覆后ANPyO晶体结构和分子结构没有发生改变;随着反应时间的增长,包覆率逐渐增加;PDA包覆3和9 h时,使得ANPyO的热分解峰值温度分别提高1.97和1.95 ℃,表观活化能分别增加25.04和139.33 kJ/mol,热爆炸临界温度分别提高23.12和20.04 ℃;ANPyO@PDA复合材料的热稳定性和热安全性高于ANPyO。

     

  • 图  ANPyO (a) 和多巴胺(b)的分子结构

    Figure  1.  Molecular structure of ANPyO (a) and dopamine (b)

    图  ANPyO@PDA复合材料的制备

    Figure  2.  Preparation of ANPyO@PDA composites

    图  ANPyO和ANPyO@PDA复合材料的实物照片和SEM图像

    Figure  3.  Photos and SEM images of ANPyO and ANPyO@PDA composites

    图  ANPyO和ANPyO@PDA复合材料的XRD谱

    Figure  4.  XRD patterns of ANPyO and ANPyO@PDA composites

    图  ANPyO和ANPyO@PDA复合材料的FT-IR光谱

    Figure  5.  FT-IR spectra of ANPyO and ANPyO@PDA composites

    图  ANPyO、PDA和ANPyO@PDA复合材料的XPS光谱

    Figure  6.  XPS spectra of ANPyO, PDA and ANPyO@PDA composites

    图  ANPyO@PDA复合材料的TG曲线

    Figure  7.  TG curves of ANPyO@PDA composites

    图  ANPyO@PDA复合材料的TG-DTG曲线

    Figure  8.  TG-DTG curves of ANPyO@PDA composites

    图  ANPyO@PDA复合材料的DSC曲线

    Figure  9.  DSC curves of ANPyO@PDA composites

    图  10  ANPyO@PDA复合材料的动力学参数拟合结果

    Figure  10.  Fitting results of kinetic parameters of ANPyO@PDA composites

    表  1  ANPyO、PDA和ANPyO@PDA的表面元素组成

    Table  1.   Element content of ANPyO, PDA and ANPyO@PDA composites

    Samples wC1s/% wN1s/% wO1s/% Atomic ratio of N to C ω/%
    ANPyO 36.92 34.33 28.75 0.93
    ANPyO@PDA-3h 42.00 29.41 28.59 0.70 14.33
    ANPyO@PDA-6h 51.06 22.85 26.09 0.45 33.44
    ANPyO@PDA-9h 58.57 12.14 29.29 0.21 64.63
    PDA 70.82 7.65 21.53 0.11
    下载: 导出CSV

    表  2  ANPyO和ANPyO@PDA复合材料的热分解动力学参数

    Table  2.   Thermal decomposition kinetic parameters of ANPyO and ANPyO@PDA composites

    SamplesEK/(kJ·mol−1)lgAK/(kJ·mol−1)EO/(kJ·mol−1)
    ANPyO321.6430.8313.93
    ANPyO@PDA-3h346.4428.7339.33
    ANPyO@PDA-9h460.9738.4448.24
    下载: 导出CSV

    表  3  ANPyO和ANPyO@PDA复合材料的热爆炸临界温度$T_{\mathrm{b}} $和自加速分解温度$T_{\mathrm{SADT}} $

    Table  3.   Critical temperatures of thermal explosion ($T_{\mathrm{b}} $) and self -accelerated decomposition temperature ($T_{\mathrm{SADT}} $) of ANPyO and ANPyO@PDA composites

    SamplesTb/KTSADT/K
    ANPyO611.69602.02
    ANPyO@PDA-3h634.81625.15
    ANPyO@PDA-9h631.73624.53
    下载: 导出CSV

    表  4  ANPyO@PDA复合材料的热力学参数

    Table  4.   Thermodynamic parameters of ANPyO@PDA composites

    SamplesΔH/(kJ·mol−1)ΔS/(J·mol−1·K−1)ΔG/(kJ·mol−1)
    ANPyO@PDA-3h341.68355.92127.69
    ANPyO@PDA-9h455.91540.80126.89
    下载: 导出CSV
  • [1] 李陈, 马凤国, 睢贺良, 等. 含能材料热分解动力学求解及热安全性理论评估的进展 [J]. 含能材料, 2020, 28(8): 798–809.

    LI C, MA F G, SUI H L, et al. Review on thermal decomposition kinetics and theoretical evaluation method for thermal safety of energetic materials [J]. Chinese Journal of Energetic Materials, 2020, 28(8): 798–809.
    [2] RITTER H, LICHT H H. Synthesis and reactions of dinitrated amino and diaminopyridines [J]. Journal of Heterocyclic Chemistry, 1995, 32(2): 585–590. doi: 10.1002/jhet.5570320236
    [3] 成健, 姚其正, 周新利, 等. 2,6-二氨基-3,5-二硝基吡啶-1-氧化物的合成与性能 [J]. 含能材料, 2008, 16(6): 672–675.

    CHENG J, YAO Q Z, ZHOU X L, et al. Synthesis and properties of 2,6-diamino-3,5-dinitropyridine-1-oxide [J]. Chinese Journal of Energetic Materials, 2008, 16(6): 672–675.
    [4] 何志伟. 多氨基多硝基吡啶氮氧化物及其配方的性能研究 [D]. 南京: 南京理工大学, 2010: 24–25.

    HE Z W. Research on performance of polyamino and polynitro derivatives of pyridine and their N-oxides and formulations [D]. Nanjing: Nanjing University of Science & Technology, 2010: 24–25.
    [5] 何志伟, 颜事龙, 刘祖亮. 2,6-二氨基-3,5-二硝基吡啶-1-氧化物的热分解特性 [J]. 火炸药学报, 2013, 36(6): 51–54, 85.

    HE Z W, YAN S L, LIU Z L. Thermal decomposition characteristics of 2,6-diamino-3,5-dinitropyridine-1-oxide [J]. Chinese Journal of Explosives & Propellants, 2013, 36(6): 51–54, 85.
    [6] 何志伟, 高大元, 刘祖亮. 2,6-二氨基-3,5-二硝基吡啶-1-氧化物及其黏结炸药的热分解动力学 [J]. 火炸药学报, 2009, 32(2): 32–36.

    HE Z W, GAO D Y, LIU Z L. Thermal decomposition kinetics of 2,6-diamino-3,5-dinitropyridine-1-oxide and its formulation explosives [J]. Chinese Journal of Explosives & Propellants, 2009, 32(2): 32–36.
    [7] LIU J J, LIU Z L, CHENG J, et al. Synthesis, crystal structure and properties of energetic complexes constructed from transition metal cations (Fe and Co) and ANPyO [J]. RSC Advances, 2013, 3(9): 2917–2923. doi: 10.1039/c2ra22839d
    [8] 张蓉仙, 钟笑笙, 陆小刚, 等. ANPyO Bi(Ⅲ)含能配合物的合成、表征、热分解行为及其对高氯酸铵热分解的催化作用 [J]. 固体火箭技术, 2017, 40(4): 448–455.

    ZHANG R X, ZHONG X S, LU X G, et al. Synthesis, characterization and catalytic effect on thermal decomposition of AP: an eco-friendly energetic Bi (Ⅲ) complex of ANPyO [J]. Journal of Solid Rocket Tchnology, 2017, 40(4): 448–455.
    [9] 何志伟, 高大元, 方东, 等. 包覆对新型炸药2,6-二氨基-3,5-二硝基吡啶-1-氧化物某些性能的影响 [J]. 含能材料, 2009, 17(3): 299–303.

    HE Z W, GAO D Y, FANG D, et al. Effect of coating on some properties of a new explosive 2,6-diamino-3,5-dinitropyridine-1-oxide [J]. Chinese Journal of Explosives & Propellants, 2009, 17(3): 299–303.
    [10] 何志伟, 汪扬文, 王洋, 等. 氟橡胶包覆ANPyO造型粉的热安全性研究 [J]. 爆破器材, 2021, 50(2): 24–28.

    HE Z W, WANG Y W, WANG Y, et al. Thermal safety of ANPyO coated with fluorine rubber [J]. Explosive Materials, 2021, 50(2): 24–28.
    [11] 王洋, 何志伟, 郭子如, 等. ANPyO/NBR的热分解动力学及热安全性研究 [J]. 中国安全科学学报, 2019, 29(5): 62–66.

    WANG Y, HE Z W, GUO Z R, et al. Thermal decomposition kinetics and thermal safety of ANPyO/NBR [J]. China Safety Science Journal, 2019, 29(5): 62–66.
    [12] YANG Z J, DING L, WU P, et al. Fabrication of RDX, HMX and CL-20 based microcapsules via in situ polymerization of melamine-formaldehyde resins with reduced sensitivity [J]. Chemical Engineering Journal, 2015, 268: 60–66. doi: 10.1016/j.cej.2015.01.024
    [13] LEE H, DELLATORE S M, MILLER W M, et al. Mussel-inspired surface chemistry for multifunctional coatings [J]. Science, 2007, 318(5849): 426–430. doi: 10.1126/science.1147241
    [14] GONG F Y, ZHANG J H, DING L, et al. Mussel-inspired coating of energetic crystals: a compact core-shell structure with highly enhanced thermal stability [J]. Chemical Engineering Journal, 2017, 309: 140–150. doi: 10.1016/j.cej.2016.10.020
    [15] YU Q, ZHAO C, ZHU Q, et al. Influence of polydopamine coating on the thermal stability of 2,6-diamino-3,5-dinitropyrazine-1-oxide explosive under different heating conditions [J]. Thermochimica Acta, 2020, 686: 178530. doi: 10.1016/j.tca.2020.178530
    [16] 祝青, 吴束力, 肖春, 等. 仿生聚多巴胺对HMX、TATB和铝粉的界面性能改性 [J]. 含能材料, 2019, 27(11): 949–954.

    ZHU Q, WU S L, XIAO C, et al. Bioinspired improving interfacial performances of HMX, TATB and aluminum powders with polydopamine coating [J]. Chinese Journal of Energetic Materials, 2019, 27(11): 949–954.
    [17] 杨学林, 曾诚成, 巩飞艳, 等. 聚多巴胺改性的CL-20和FOX-7炸药力学性能及热稳定性 [J]. 含能材料, 2021, 29(11): 1049–1060.

    YANG X L, ZENG C C, GONG F Y, et al. Mechanical properties and thermal stabilities of CL-20 and FOX-7 explosives modified by polydopamine [J]. Chinese Journal of Energetic Materials, 2021, 29(11): 1049–1060.
    [18] CHEN L, LI Q, LIU S, et al. Bio-inspired synthesis of energetic microcapsules core-shell structured with improved thermal stability and reduced sensitivity via in situ polymerization for application potential in propellants [J]. Advanced Materials Interfaces, 2021, 8(23): 2101248. doi: 10.1002/admi.202101248
    [19] 周心龙, 刘祖亮, 成健, 等. 超细ANPyO/HMX混晶炸药的制备与性能 [J]. 火炸药学报, 2014, 37(5): 47–51.

    ZHOU X L, LIU Z L, CHENG J, et al. Preparation and properties of superfine ANPyO/HMX mischcrystal explosive [J]. Chinese Journal of Explosives & Propellants, 2014, 37(5): 47–51.
    [20] ZANGMEISTER R A, MORRIS T A, TARLOV M J. Characterization of polydopamine thin films deposited at short times by autoxidation of dopamine [J]. Langmuir, 2013, 29(27): 8619–8628. doi: 10.1021/la400587j
    [21] 肖立柏, 高红旭, 赵凤起, 等. 3,3’-二硝氨基-4,4’-氧化偶氮呋咱羟胺盐的热行为和热安全性研究 [J]. 火炸药学报, 2020, 43(1): 24–27, 32.

    XIAO L B, GAO H X, ZHAO F Q, et al. Thermal behavior and safety of dihydroxylammonium 3,3’-dinitroamino-4,4’-azoxyfurazanate [J]. Chinese Journal of Explosives & Propellants, 2020, 43(1): 24–27, 32.
    [22] 汤崭, 杨利, 乔小晶, 等. HMX热分解动力学与热安全性研究 [J]. 含能材料, 2011, 19(4): 396–400.

    TANG Z, YANG L, QIAO X J, et al. Study on thermal decomposition kinetics and thermal safety of HMX [J]. Chinese Journal of Energetic Materials, 2011, 19(4): 396–400.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  408
  • HTML全文浏览量:  50
  • PDF下载量:  37
出版历程
  • 收稿日期:  2023-07-26
  • 修回日期:  2023-08-09
  • 网络出版日期:  2023-12-12
  • 刊出日期:  2023-12-15

目录

    /

    返回文章
    返回