| [1] | Hayes D, Hixson R S, McQueen R G. High Pressure Elastic Properties, Solid-Liquid Phase Boundary and Liquid Equation of State from Release Wave Measurements in Shock-Loaded Copper[A]//Furnish M D, Chhabildas L C, Hixson R S. Shock Compression of Condensed Matter-1999[C]. American Institute of Physics, 2000: 483S488, |
| [2] | Li M Sh, Chen D Q. A Constitutive Model forMaterials under High Temperature and Pressure[J]. Chinese Journal of High Pressure Physics, 2001, 15(1): 24. (in Chinese) |
| [3] | 李茂生, 陈栋泉. 高温高压下材料的本构模型[J]. 高压物理学报, 2001, 15(1): 24. |
| [4] | Chhabildas L C, Furnish M D, Reinhart W D. Shock Induced Melting in Aluminum: Wave Profiles Measurements[A]//Furnish M D, Chhabildas L C, Hixson R S. Shock Compression of Condensed Matter-1999[C]. American Institute of Physics, 2000: 97-100. |
| [5] | Asay J R, Chhabildas L C, Dandekar D P. Shear Modulus of Shock-Loaded Polycrystalline Tungsten[J]. J Appl Phys, 1980, 51(9): 4774-4783. |
| [6] | Millett J C F, Bourne N K, Rosenberg Z, et al. Shear Strength Measurements in a Tungsten Alloy during Shock Loading[J]. J Appl Phys, 1999, 86(12): 6707-6709. |
| [7] | Zhou M, Clifton R J. Dynamic Constitutive and Failure Behavior of a Two-Phase Tungsten Composite[J]. J Appl Mech, 1997, 64: 487. |
| [8] | Huang H, Asay J R. Compressive Strength Measurements in Aluminum for Shock Compression over the Stress Range of 4~22GPa[J]. J Appl Phys, 2005, 98: 033524. |
| [9] | Millett J C F, Bourne N K, Jones I P. Shear Strength Measurements in the TiAl-Based alloy Ti-48Al-2Nb-2Cr-1B during Shock Loading[J]. J Appl Phys, 2001, 90(3): 1188-1191. |
| [10] | Steinberg D J, Cochran S G, Guinan M W. A Constitutive Model for Metals Applicable at High-Strain Rate[J]. J Appl Phys, 1980, 51(3): 1498-1504. |
| [11] | Marie-Helene Nadal, Philippe Le Poac. Continuous Model for the Shear Modulus as a Function of Pressure and Temperature up to the Melting Point: Analysis and Ultrasonic Validation[J]. J Appl Phys, 2003, 93(5): 2472-2480. |
| [12] | Leonid Bureakovsky, Carl W Greeff, Dean L Preston. Analytic Model of the Shear Modulus at all Temperatures and Densities[J]. Phys Rev B, 2003, 67: 094107. |
| [13] | Leonid Bureakovsky, Dean L Preston. Generalized Guinan-Steinberg Formula for the shear Modulus at all Pressures[J]. Phys Rev B, 2005, 71: 184118. |
| [14] | Ran X W, Tang W H, Tan H, et al. High Temperature and Pressure Constitutive Relation of Materials by Considering Fusion Enthalpy[J]. Acta Physuca Sinca, 2006, 55(6): (in Chinese) |
| [15] | 冉宪文, 汤文辉, 谭华, 等. 考虑材料熔化潜热的高温高压本构[J]. 物理学报, 2006, 55(6): |
| [16] | Hua J S, Tan H, Jin FuQ. The Variation of Shear Modulus for Tungsten Alloy under Shock Loading[J]. Structure Environment Engineering, 2000, (4): 52. (in Chinese) |
| [17] | 华劲松, 谭华, 经福谦. 高温高压下钨合金的剪切模量变化[J]. 强度与环境, 2000, (4): 52. |
| [18] | McQueen R G, Fritz J N, Morris C E. The Velocity of Sound Behind Strong Shock Waves in 2024 Al[A]//Asay J R, Graham R A, Straub G K. Shock Waves in Condensed Matter-1983[C]. Amsterdam: North Holland Physics Publishing, 1984: 95-98. |
| [19] | Brown J M, Shaner J W. Rarefaction Velocities in Shocked Tantalum and the High Pressure Melting Point[A]//Asay J R, Graham R A, Straub G K. Shock Waves in Condensed Matter-1983[C]. Amsterdam: North Holland Physics Publishing, 1984: 91-94. |