Volume 34 Issue 3
Jun 2020
Turn off MathJax
Article Contents
YIN Huawei, JIANG Ke, ZHANG Liao, HUANG Liang, WANG Chenling. K&C Model of Steel Fiber Reinforced Concrete Plate under Impact and Blast Load[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 034205. doi: 10.11858/gywlxb.20190853
Citation: YIN Huawei, JIANG Ke, ZHANG Liao, HUANG Liang, WANG Chenling. K&C Model of Steel Fiber Reinforced Concrete Plate under Impact and Blast Load[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 034205. doi: 10.11858/gywlxb.20190853

K&C Model of Steel Fiber Reinforced Concrete Plate under Impact and Blast Load

doi: 10.11858/gywlxb.20190853
  • Received Date: 01 Nov 2019
  • Rev Recd Date: 25 Nov 2019
  • Steel fiber reinforced concrete (SFRC) is widely used in protective structures due to its excellent ductility, toughness and energy absorption capacity. K&C model is a common constitutive model for studying the response of normal concrete components under impact and blast loads, but it cannot accurately characterize the dynamic response of SFRC. In order to improve prediction of K&C model for the dynamic response of SFRC plate under impact and blast load, this work improves K&C model: a new failure strength surface parameter model was established based on a large number of triaxial compression experimental data, a new damage evolution model was established by trial-and-error method, and the damage parameters of tensile and compressive were calibrated. A new compression dynamic increase factor (CDIF) model was established based on a large number of uniaxial compression experimental data of SFRC under high strain rate. The dynamic response of SFRC plate is simulated by explicit dynamic analysis software LS-DYNA. The effectiveness and reliability of the above improvements have been verified by simulation results.

     

  • loading
  • [1]
    TAI Y S. Flat ended projectile penetrating ultra-high strength concrete plate target [J]. Theoretical and Applied Fracture Mechanics, 2009, 51(2): 117–128. doi: 10.1016/j.tafmec.2009.04.005
    [2]
    LUCCIONI B, ISLA F, CODINA R, et al. Effect of steel fibers on static and blast response of high strength concrete [J]. International Journal of Impact Engineering, 2017, 107(1): 23–27.
    [3]
    宋玉普, 赵国藩, 彭放, 等. 三向应力状态下钢纤维混凝土的强度特性及破坏准则 [J]. 土木工程学报, 1994, 27(3): 14–23.

    SONG Y P, ZHAO G F, PENG F, et al. Strength behavior and failure criteria of steel fiber concrete under triaxial stresses [J]. China Civil Engineering Journal, 1994, 27(3): 14–23.
    [4]
    王乾峰, 彭刚, 戚永乐. 围压条件下钢纤维混凝土动态压缩试验研究 [J]. 混凝土, 2009(3): 29–31. doi: 10.3969/j.issn.1002-3550.2009.03.009

    WANG Q F, PENG G, QI Y L. Dynamical press test of SFRC under confined pressure [J]. Concrete, 2009(3): 29–31. doi: 10.3969/j.issn.1002-3550.2009.03.009
    [5]
    王志亮, 诸斌. 钢纤维混凝土三轴压缩下的强度和韧度特性 [J]. 建筑材料学报, 2012, 15(3): 301–305. doi: 10.3969/j.issn.1007-9629.2012.03.002

    WANG Z L, ZHU B. Strength and toughness characteristic of steel fiber reinforced concrete in triaxial compression [J]. Journal of Building Materials, 2012, 15(3): 301–305. doi: 10.3969/j.issn.1007-9629.2012.03.002
    [6]
    CHI Y, XU L H, MEI G D, et al. A unified failure envelope for hybrid fibre reinforced concrete subjected to true triaxial compression [J]. Composite Structures, 2014, 109: 31–40. doi: 10.1016/j.compstruct.2013.10.054
    [7]
    SIRIJAROONCHAR K, EL-TAWIL S, PARRA-MONTESINOS G. Behavior of high performance fiber reinforced cement composites under multi-axial compressive loading [J]. Cement and Concrete Composites, 2010, 32(1): 62–72. doi: 10.1016/j.cemconcomp.2009.09.003
    [8]
    LU X, HSU C T T. Behavior of high strength concrete with and without steel fiber reinforcement in triaxial compression [J]. Cement and Concrete Research, 2006, 36(9): 1679–1685. doi: 10.1016/j.cemconres.2006.05.021
    [9]
    FARNAM Y, MOOSAVI M, SHEKARCHI M, et al. Behaviour of slurry infiltrated fibre concrete (SIFCON) under triaxial compression [J]. Cement and Concrete Research, 2010, 40(11): 1571–1581. doi: 10.1016/j.cemconres.2010.06.009
    [10]
    FANTILLI A P, VALLINI P, CHIAIA B. Ductility of fiber-reinforced self-consolidating concrete under multi-axial compression [J]. Cement and Concrete Composites, 2011, 33(4): 520–527. doi: 10.1016/j.cemconcomp.2011.02.007
    [11]
    REN G M, WU H, FANG Q, et al. Triaxial compressive behavior of UHPCC and applications in the projectile impact analyses [J]. Construction and Building Materials, 2016, 113(1): 1–14.
    [12]
    MALVAR L J, CRAWFORD J E, WESEVICH J W, et al. A plasticity concrete material model for DYNA3D [J]. International Journal of Impact Engineering, 1997, 19(9/10): 847–873.
    [13]
    CHI Y, XU L, ZHANG Y. Experimental study on hybrid fiber–reinforced concrete subjected to uniaxial compression [J]. Journal of Materials in Civil Engineering, 2014, 26(2): 211–218. doi: 10.1061/(ASCE)MT.1943-5533.0000764
    [14]
    MURUGESAN REDDIAR M K. Stress-strain model of unconfined and confined concrete and stress-block parameters [D]. Texas A & M University, 2009: 31–37.
    [15]
    BAZANT Z. P. Fracture mechanics of concrete structures [C]//Proceedings of the First International Conference on Fracture Mechanics of Concrete Structures. Amsterdam: Breckenridge, CO, 1992: 20−25.
    [16]
    董振英, 李庆斌, 王光纶, 等. 钢纤维混凝土轴拉应力应变特性的试验研究 [J]. 水利学报, 2002(5): 47–50. doi: 10.3321/j.issn:0559-9350.2002.05.010

    DONG Z Y, LI Q B, WANG G L, et al. Experimental study on stress-strain characteristics of steel fiber reinforced concrete under uniaxial tension [J]. Journal of Hydraulic Engineering, 2002(5): 47–50. doi: 10.3321/j.issn:0559-9350.2002.05.010
    [17]
    Comité Euro-International du Béton, CEB-FIP Model Code 1990: Design Code [S]. London: Thomas Telford Limited, 1993.
    [18]
    WANG S S, ZHANG M H, QUEK S T. Effect of high strain rate loading on compressive behaviour of fibre-reinforced high-strength concrete [J]. Magazine of Concrete Research, 2011, 63(11): 813–827. doi: 10.1680/macr.2011.63.11.813
    [19]
    HAO Y, HAO H. Dynamic compressive behaviour of spiral steel fibre reinforced concrete in split Hopkinson pressure bar tests [J]. Construction and Building Materials, 2013, 48: 521–532. doi: 10.1016/j.conbuildmat.2013.07.022
    [20]
    SUN X W, ZHAO K, LI Y C, et al. A study of strain-rate effect and fiber reinforcement effect on dynamic behavior of steel fiber-reinforced concrete [J]. Construction and Building Materials, 2018, 158: 657–669. doi: 10.1016/j.conbuildmat.2017.09.093
    [21]
    WANG Y H, WANG Z D, LIANG X Y, et al. Experimental and numerical studies on dynamic compressive behavior of reactive powder concretes [J]. Acta Mechanica Solida Sinica, 2008, 21(5): 420–430. doi: 10.1007/s10338-008-0851-0
    [22]
    SU Y, LI J, WU C Q, et al. Effects of steel fibres on dynamic strength of UHPC [J]. Construction and Building Materials, 2016, 114(1): 708–718.
    [23]
    WANG Z L, LIU Y S, SHEN R F. Stress–strain relationship of steel fiber-reinforced concrete under dynamic compression [J]. Construction and Building Materials, 2008, 22(5): 811–819. doi: 10.1016/j.conbuildmat.2007.01.005
    [24]
    ACI Committee 446. Report on dynamic fracture of concrete [R]. Michigan: American Concrete Institute, 2004.
    [25]
    MALVAR L J, ROSS C A. Review of strain rate effects for concrete in tension [J]. Aci Materials Journal, 1998, 95(6): 735–739.
    [26]
    THOMAS R J, SORENSEN A D. Review of strain rate effects for UHPC in tension [J]. Construction and Building Materials, 2017, 153: 846–856. doi: 10.1016/j.conbuildmat.2017.07.168
    [27]
    PARK J K, KIM S W, KIM D J. Matrix-strength-dependent strain-rate sensitivity of strain-hardening fiber-reinforced cementitious composites under tensile impact [J]. Composite Structures, 2017, 162: 313–324. doi: 10.1016/j.compstruct.2016.12.022
    [28]
    PARK S H, KIM D J, KIM S W. Investigating the impact resistance of ultra-high-performance fiber-reinforced concrete using an improved strain energy impact test machine [J]. Construction and Building Materials, 2016, 125: 145–159. doi: 10.1016/j.conbuildmat.2016.08.027
    [29]
    赵春风, 王强, 王静峰, 等. 近场爆炸作用下核电厂安全壳穹顶钢筋混凝土板的抗爆性能 [J]. 高压物理学报, 2019, 33(2): 025101. doi: 10.11858/gywlxb.20180598

    ZHAO C F, WANG Q, WANG J F, et al. Blast resistance of containment dome reinforced concrete slab in NPP under close-in explosion [J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 025101. doi: 10.11858/gywlxb.20180598
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Article Metrics

    Article views(7872) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return