Volume 34 Issue 3
Jun 2020
Turn off MathJax
Article Contents
LING Xuyu, LIU Fusheng, WANG Yigao. Influence of Initial Porosity on Shock Chemical Reaction of Nibium-Silicon Powder Mixture[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 034101. doi: 10.11858/gywlxb.20190851
Citation: LING Xuyu, LIU Fusheng, WANG Yigao. Influence of Initial Porosity on Shock Chemical Reaction of Nibium-Silicon Powder Mixture[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 034101. doi: 10.11858/gywlxb.20190851

Influence of Initial Porosity on Shock Chemical Reaction of Nibium-Silicon Powder Mixture

doi: 10.11858/gywlxb.20190851
  • Received Date: 30 Oct 2019
  • Rev Recd Date: 15 Nov 2019
  • By employing the two-stage light gas gun and flyer impact technology, the impact recovery experiments of nibium-silicon powder mixtures with different initial porosity at high impact intensity were achieved. The recycled products were characterized to investigate the effect of porosity on the impact chemical reaction of nibium-silicon powder at high impact strength. The results showed that the sample with low porosity (10%) was hardly reacted; When the porosity is 20%, the nibium-silicon powder experienced a partial chemical reaction to form a NbSi2 compound; As the porosity was increased to 35%, a complete reaction has occurred to generate a Nb5Si3 intermetallic compound under the same impact strength (the flyer velocity about 2.35 km/s). Such results have shown that the complete reaction in the powder reactant of high-porosity powder mixture is mainly due to the high temperature generated by the pore collapse.

     

  • loading
  • [1]
    乔良, 张先锋, 何勇. 颗粒金属材料冲击压缩细观数值模拟 [J]. 高压物理学报, 2013, 27(6): 863–871.

    QIAO L, ZHANG X F, HE Y. Meso-scale numerical simulation of the shock compression of particle metal materials [J]. Chinese Journal of High Pressure Physics, 2013, 27(6): 863–871.
    [2]
    EAKINS D E, THADHANI N N. Shock compression of reactive powder mixtures [J]. International Materials Reviews, 2013, 54(4): 181–213.
    [3]
    崔乃夫, 陈鹏万, 周强. 冲击引发Ti-Si活性粉体反应过程研究 [J]. 高压物理学报, 2017, 31(4): 478–485. doi: 10.11858/gywlxb.2017.04.017

    CUI N F, CHEN P W, ZHOU Q. Shock induced reaction process of Ti-Si reactive powder [J]. Chinese Journal of High Pressure Physics, 2017, 31(4): 478–485. doi: 10.11858/gywlxb.2017.04.017
    [4]
    HERBOLD E B, THADHANI N N, JORDIN J L. Observation of a minimum reaction initiation threshold in ball-milled Ni+Al under high-rate mechanical loading [J]. Journal of Applied Physics, 2011, 109(6): 66108. doi: 10.1063/1.3549822
    [5]
    COOPER S R, BENSON D J, NESTERENKO V F. A numerical exploration of the role of void geometry on void collapse and hot spot formation in ductile materials [J]. International Journal of Plasticity, 2000, 16(5): 525–540. doi: 10.1016/S0749-6419(99)00072-8
    [6]
    SEIFERT M, SHEN Z, KRENKEL W. Nb(Si, C, N) composite materials densified by spark plasma sintering [J]. Journal of the European Ceramic Society, 2015, 35(12): 3319–3327. doi: 10.1016/j.jeurceramsoc.2015.02.005
    [7]
    WAN B, XIAO F, ZHANG Y. Theoretical study of structural characteristics, mechanical properties and electronic structure of metal (TM = V, Nb and Ta) silicides [J]. Journal of Alloys and Compounds, 2016, 681: 412–420. doi: 10.1016/j.jallcom.2016.04.253
    [8]
    SCHIESINGER M E, GOKHALE A B, ABBASCHIAN R. The Nb-Si (Niobium-Silicon) system [J]. Journal of Phase Equilibria, 1993, 14(4): 502–509. doi: 10.1007/BF02671971
    [9]
    SHI S, ZHU L, JIA L. Ab-initio study of alloying effects on structure stability and mechanical properties of α-Nb5Si3 [J]. Computational Materials Science, 2015, 108: 121–127. doi: 10.1016/j.commatsci.2015.06.019
    [10]
    VECCHIO K S, YU L H, MEYERS M A. Shock synthesis of silicides-I. experimentation and microtrural evolution [J]. Acta Metallurgica et Materialia, 1994, 42(3): 701–714. doi: 10.1016/0956-7151(94)90268-2
    [11]
    MEYERS M A, BATSANOV S S, GAVRILKIN S M. Effect of shock pressure and plastic strain on chemical reactions in Nb-Si and Mo-Si systems [J]. Materials Science and Engineering A, 1995, 201(1/2): 150–158. doi: 10.1016/0921-5093(95)09760-0
    [12]
    PRASAD A V S S, BASU S. Numerical modelling of shock-induced chemical reactions (SICR) in reactive powder mixtures using smoothed particle hydrodynamics (SPH) [J]. Modelling and Simulation in Materials Science and Engineering, 2015, 23: 1–23.
    [13]
    LING X Y, LIU F S, ZHANG M J. Shock synthesis of niobium silicide (Nb5Si3) via the flyer plate impact technique with high impact velocities [J]. Journal of Alloys and Compounds, 2018, 740: 1032–1036. doi: 10.1016/j.jallcom.2017.12.089
    [14]
    QIN L, HU J, CUI C. Effect of Al content on reaction laser sintering of Ni-Al powder [J]. Journal of Alloys and Compounds, 2009, 473(1/2): 227–230. doi: 10.1016/j.jallcom.2008.05.039
    [15]
    经福谦. 实验物态方程导引 [M]. 第2版. 北京: 科学出版社, 1999: 197–199, 204–207.

    JING F Q. Introduction to experimental equation of state [M]. 2nd ed. Beijing: Science Press, 1999: 197–199, 204–207.
    [16]
    尹昊. 碳基纳米材料的爆炸合成及其机理研究 [D]. 北京. 北京理工大学, 2014: 13 - 16.

    YIN H. Study on the explosive synthesis and mechanism of carbon-based nanomaterials [D]. Beijing: Beijing Institute of Technology, 2014: 13–16.
    [17]
    汤文辉, 张若棋. 物态方程理论及计算概论 [M]. 长沙: 国防科技大学出版社, 1999: 273–274.

    TANG W H, ZHANG R Q. Introduction to the theory of state of matter equations and calculations [M]. Changsha: National Defense Science and Technology University Press, 1999: 273–274.
    [18]
    MA C L, KASAMA A, TANAKA H. Microstructures and mechanical properties of Nb/Nb-silicide in-situ composites synthesized by reactive of ball milled powders [J]. Materials Transactions, 2000, 40(3): 444–451.
    [19]
    QIAO L, ZHANG X F, HE Y. Multiscale modelling on the shock-induced chemical reactions of multifunctional energetic structural materials [J]. Journal of Applied Physics, 2013, 113: 173513. doi: 10.1063/1.4803712
    [20]
    AYYAR A, CHAWLA N. Microstructure-based modeling of the influence of particle spatial distribution and fracture on crack growth in particle-reinforced composites [J]. Acta Materialia, 2007, 55(18): 6064–6073. doi: 10.1016/j.actamat.2007.06.044
    [21]
    张先锋, 赵晓宁, 乔良. 反应金属冲击反应过程的理论分析 [J]. 爆炸与冲击, 2010, 30(2): 145–151. doi: 10.11883/1001-1455(2010)02-0145-07

    ZHANG X F, ZHAO X N, QIAO L. The theoretical analysis of metal shock reaction process [J]. Explosion and Shock waves, 2010, 30(2): 145–151. doi: 10.11883/1001-1455(2010)02-0145-07
    [22]
    BAER M R. Modeling heterogeneous energetic materials at the mesoscale [J]. Thermochimica Acta, 2002, 384(1): 351–367.
    [23]
    陈俊祥, 耿华运. 多孔材料温压状态方程计算简要评述 [J]. 高压物理学报, 2019, 33(3): 030111. doi: 10.11858/gywlxb.20190767

    CHEN J X, GENG H Y. Review on evaluation of temperature-pressure equation of state of porous materials [J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030111. doi: 10.11858/gywlxb.20190767
    [24]
    VREELAND T, MONTILLA K L, MUTZ A H. Shock wave initiation of the Ti5Si3 reaction in elemental powders [J]. Journal of Applied Physics, 1997, 82(6): 2840–2844. doi: 10.1063/1.366115
    [25]
    VOGLER T J, LEE M Y, GRADY D E. Static and dynamic compaction of ceramic powders [J]. International Journal of Solids and Structures, 2007, 44(2): 636–658. doi: 10.1016/j.ijsolstr.2006.05.001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views(7688) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return