爆炸载荷作用下焊缝区附近埋地X70钢管的动力响应分析

李正鹏 曲艳东

李正鹏, 曲艳东. 爆炸载荷作用下焊缝区附近埋地X70钢管的动力响应分析[J]. 高压物理学报, 2020, 34(3): 034204. doi: 10.11858/gywlxb.20190831
引用本文: 李正鹏, 曲艳东. 爆炸载荷作用下焊缝区附近埋地X70钢管的动力响应分析[J]. 高压物理学报, 2020, 34(3): 034204. doi: 10.11858/gywlxb.20190831
LI Zhengpeng, QU Yandong. Dynamic Response Analysis of Buried X70 Steel Pipe near Weld Zone under Blast Loads[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 034204. doi: 10.11858/gywlxb.20190831
Citation: LI Zhengpeng, QU Yandong. Dynamic Response Analysis of Buried X70 Steel Pipe near Weld Zone under Blast Loads[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 034204. doi: 10.11858/gywlxb.20190831

爆炸载荷作用下焊缝区附近埋地X70钢管的动力响应分析

doi: 10.11858/gywlxb.20190831
基金项目: 国家自然科学基金(11302094);辽宁省高等学校优秀人才项目(LJQ2014063);辽宁省自然科学基金(20170540441)
详细信息
    作者简介:

    李正鹏(1993-),男,硕士研究生,主要从事爆炸力学与爆炸安全研究. E-mail: 17839988929@163.com

    通讯作者:

    曲艳东(1978-),男,博士,教授,主要从事爆炸力学与爆炸安全研究. E-mail: plxfeng2009@sohu.com

  • 中图分类号: O383.1; TE973

Dynamic Response Analysis of Buried X70 Steel Pipe near Weld Zone under Blast Loads

  • 摘要: 爆破地震效应对埋地管线的影响已成为工程爆破领域研究的热点。基于有限元软件ANSYS/LS-DYNA,以两种含Y型焊缝(坡口有2 mm余高焊缝和坡口无余高焊缝)的埋地X70钢管为例,数值模拟研究了TNT炸药量相同(4.473 kg)而炸高(60.0、85.0和110.0 cm)不同时,焊缝区附近埋地X70钢管的动力响应规律。研究表明:当炸高为60.0 cm时,焊缝有余高的管道受应力集中的影响较大,且先于焊缝无余高的管道进入屈服阶段;当炸高为60.0和85.0 cm时,焊缝有余高的管道整体抵抗变形的能力明显弱于焊缝无余高的管道。管土间的相互作用对X70管道背爆面有支撑作用,可有效地减小管道背爆面的位移。在相同条件下,焊缝有余高的X70管道抵抗振动的性能弱于焊缝无余高的管道,且与焊缝形式相比,炸高对含焊缝区的X70管道的最大振速起主要影响作用。

     

  • 图  计算模型

    Figure  1.  Calculation model

    图  焊缝的设计尺寸

    Figure  2.  Design of weld size

    图  焊缝的简化模型

    Figure  3.  Simplified diagram of weld model

    图  不同时刻X70钢管道的von Mises应力

    Figure  4.  von Mises stress of X70 steel pipe at different moments

    图  管道A(H = 2.0 mm)典型单元的应力时程曲线

    Figure  5.  Stress-time curves of classic element of A pipe (H = 2.0 mm)

    图  管道B(H = 0)典型单元的应力时程曲线

    Figure  6.  Stress-time curves of classic element of B pipe (H = 0)

    图  管道典型单元的速度时程曲线

    Figure  7.  Velocity-time curve of typical pipeline elements

    表  1  计算工况

    Table  1.   Calculation conditions

    Weld typeBuried depth of pipeline/mSize of TNT/(cm × cm × cm)hB/cm
    No weld reinforcement (H = 0)1.514.0 × 14.0 × 14.060.0, 85.0, 110.0
    Weld reinforcement (H = 2.0 mm)1.514.0 × 14.0 × 14.060.0, 85.0, 110.0
    下载: 导出CSV

    表  2  炸药材料参数[12]

    Table  2.   Material parameters of explosive[12]

    ρz/(g·cm–3)D/(m·s–1)p/GPaA/GPaB/GPaR1R2ωE/(J·cm–3)
    1.586 93021373.773.754.150.900.356 000
    下载: 导出CSV

    表  3  土体材料参数[1314]

    Table  3.   Material parameters of soil[1314]

    ρt/(g·cm–3)G/MPaK/MPaa0/Pa2a1/Paa2
    1.841.1487.872.12 × 1085.23 × 1033.22 × 10–2
    下载: 导出CSV

    表  4  管道及焊缝材料参数[1518]

    Table  4.   Material parameters of pipe and weld bead[1518]

    Materialρ/(g·cm–3)μEs/GPaEt/GPaσy/GPa
    X70-pipeline[1516]7.900.321013.50.48
    Weld bead[1718]7.250.322015.30.55
    下载: 导出CSV

    表  5  埋地X70管道的迎爆面和背爆面的最大位移

    Table  5.   Maximum displacement of explosion-front and explosion-back surfaces of buried X70 pipeline

    Types of weldhB/cmMaximum displacement/cm
    Explosion-front surfaceExplosion-back surface
    Weld reinforcement (H = 2.0 mm) 60.05.4820.846
    85.03.1790.455
    110.02.4640.220
    No weld reinforcement (H = 0) 60.05.2120.943
    85.02.9120.570
    110.02.3400.290
    下载: 导出CSV

    表  6  不同炸高时埋地X70管道的最大等效应变

    Table  6.   Maximum effective strain of buried X70 pipeline with different blasting heights

    Types of weldhB/cmPeak effective strain/10–3
    Weld reinforcement
    (H = 2.0 mm)
    60.09.937
    85.04.162
    110.02.251
    No weld reinforcement
    (H = 0)
    60.06.877
    85.02.673
    110.01.656
    下载: 导出CSV

    表  7  埋地X70管道的迎爆面和背爆面最大振速

    Table  7.   Maximum vibration velocity of explosion-front and explosion-back surfaces of buried X70 pipeline

    Types of weldhB/cmMaximum vibration velocity/(m·s–1)
    Explosion-front surfaceExplosion-back surface
    Weld reinforcement (H = 2.0 mm) 60.022.7484.431
    85.0 9.3162.817
    110.0 4.5031.693
    No weld reinforcement (H = 0) 60.024.3484.294
    85.0 9.8552.867
    110.0 4.8321.746
    下载: 导出CSV
  • [1] 董绍华, 韩忠晨, 刘刚. 管道系统完整性评估技术进展及应用对策 [J]. 油气储运, 2014, 33(2): 121–128.

    DONG S H, HAN Z C, LIU G. Advancement and application measures of pipeline integrity assessment technology [J]. Oil & Gas Storage and Transportation, 2014, 33(2): 121–128.
    [2] 张震, 周传波, 路世伟, 等. 爆破振动作用下邻近埋地混凝土管道动力响应特性 [J]. 哈尔滨工业大学学报, 2017, 46(9): 79–84. doi: 10.11918/j.issn.0367-6234.201611089

    ZHANG Z, ZHOU C B, LU S W, et al. Dynamic response characteristic of adjacent buried concrete pipeline subjected to blasting vibration [J]. Journal of Harbin Institute of Technology, 2017, 46(9): 79–84. doi: 10.11918/j.issn.0367-6234.201611089
    [3] 钟冬望, 黄雄, 卢哲, 等. 爆破荷载作用下不同尺寸埋地钢管的动态响应实验研究 [J]. 科学技术与工程, 2018, 18(13): 219–223. doi: 10.3969/j.issn.1671-1815.2018.13.035

    ZHONG D W, HUANG X, LU Z, et al. Experimental study on dynamic response of buried steel tubes with different sizes under blasting loading [J]. Science Technology and Engineering, 2018, 18(13): 219–223. doi: 10.3969/j.issn.1671-1815.2018.13.035
    [4] 都的箭, 马书广, 杨惊东. 埋地管道爆炸地冲击作用的试验研究 [J]. 工程爆破, 2006, 12(2): 19–23. doi: 10.3969/j.issn.1006-7051.2006.02.006

    DU D J, MA S G, YANG J D. Experimental study of dynamical stress of buried pipelines under explosion ground shock waves [J]. Engineering Blasting, 2006, 12(2): 19–23. doi: 10.3969/j.issn.1006-7051.2006.02.006
    [5] JI C, SONG K J, GAO F Y, et al. Experimental and numerical studies on the deformation and tearing of X70 pipelines subjected to localized blast loading [J]. Thin-Walled Structures, 2016, 107: 156–168. doi: 10.1016/j.tws.2016.03.010
    [6] QU Y D, LIU W L, GWARZO M, et al. Parametric study of anti-explosion performance of reinforced concrete T-shaped beam strengthened with steel plates [J]. Construction and Building Materials, 2017, 156(15): 692–707.
    [7] 曲艳东, 刘万里, 翟诚, 等. 水下爆破破冰爆炸冲击波传播规律数值分析 [J]. 爆破, 2017, 34(2): 100–104. doi: 10.3963/j.issn.1001-487X.2017.02.019

    QU Y D, LIU W L, ZHAI C, et al. Numerical simulation of propagation law of shock waves in process of breaking ice by underwater blasting [J]. Blasting, 2017, 34(2): 100–104. doi: 10.3963/j.issn.1001-487X.2017.02.019
    [8] 梁政, 张澜, 张杰. 地面爆炸载荷下埋地管道动力响应分析 [J]. 安全与环境学报, 2016, 16(3): 158–163.

    LIANG Z, ZHANG L, ZHANG J. Dynamic response analysis of the underground-buried pipeline under the ground-surface explosive load [J]. Journal of Safety and Environment, 2016, 16(3): 158–163.
    [9] 房冲. 内空和充水管道在爆炸冲击荷载下的数值模拟分析 [J]. 山西建筑, 2017, 43(11): 130–132. doi: 10.3969/j.issn.1009-6825.2017.11.071

    FANG C. The numerical simulation analysis of inner air pipes and water-filled pipes on the basis of explosive blast [J]. Shanxi Architecture, 2017, 43(11): 130–132. doi: 10.3969/j.issn.1009-6825.2017.11.071
    [10] 余洋, 纪冲, 周游, 等. 侧向局部爆炸荷载下钢质方管的损伤破坏及影响因素研究 [J]. 振动与冲击, 2018, 37(15): 191–198.

    YU Y, JI C, ZHOU Y, et al. Damage and failure of steel square tubes under lateral local explosion loading and their influencing factors [J]. Journal of Vibration and Shock, 2018, 37(15): 191–198.
    [11] 杨天冰, 郭瑞杰. X70管道环焊缝接头残余应力数值模拟 [J]. 电焊机, 2008, 38(11): 9–14. doi: 10.3969/j.issn.1001-2303.2008.11.004

    YANG T B, GUO R J. Residual stress simulation of X70 pipeline girth welding joint [J]. Electric Welding Machine, 2008, 38(11): 9–14. doi: 10.3969/j.issn.1001-2303.2008.11.004
    [12] 曲艳东, 杨尚, 李思宇, 等. TNT炸药爆炸场中三波点的数值模拟 [J]. 工程爆破, 2019, 25(1): 1–6. doi: 10.3969/j.issn.1006-7051.2019.01.001

    QU Y D, YANG S, LI S Y, et al. Numerical simulation of triple point in the explosion field of TNT explosive [J]. Engineering Blasting, 2019, 25(1): 1–6. doi: 10.3969/j.issn.1006-7051.2019.01.001
    [13] 李海超, 魏连雨, 常春伟. 黄土中爆炸挤密实验与数值模拟 [J]. 爆炸与冲击, 2018, 38(2): 289–294. doi: 10.11883/byzcj-2016-0251

    LI H C, WEI L Y, CHANG C W. Experiment and numerical simulation of explosion compaction in loess [J]. Explosion and Shock Waves, 2018, 38(2): 289–294. doi: 10.11883/byzcj-2016-0251
    [14] 杨秀敏. 爆炸冲击现象数值模拟 [M]. 合肥: 中国科学技术大学出版社, 2010: 335–338.

    YANG X M. Numerical simulation for explosion and phenomena [M]. Hefei: China University of Science and Technology Press, 2010: 335–338.
    [15] 倪玲英, 郎健, 陈良路. 爆炸载荷作用下海底管道动力响应数值模拟 [J]. 油气储运, 2018, 37(2): 222–227.

    NI L Y, LANG J, CHEN L L. Numerical simulation on the dynamic response of submarine pipelines under blast loading [J]. Oil & Gas Storage and Transportation, 2018, 37(2): 222–227.
    [16] 姚安林, 赵师平, 么惠全, 等. 地下爆炸对埋地输气管道冲击响应的数值分析 [J]. 西南石油大学学报(自然科学版), 2009, 31(4): 168–172. doi: 10.3863/j.issn.1674-5086.2009.04.037

    YAO A L, ZHAO S P, YAO H Q, et al. Numerical simulation of response of underground explosion ground shock to buried gas pipeline [J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2009, 31(4): 168–172. doi: 10.3863/j.issn.1674-5086.2009.04.037
    [17] 蒋勇. 超低氢高韧性X70管线钢配套焊条CHE607GX的研制及应用 [D]. 重庆: 重庆大学, 2006: 5–46.

    JIANG Y. Study on ultra-low hydrogen high strength CHE607GX electrode for X70 pipeline [D]. Chongqing: Chongqing University, 2006: 5–46.
    [18] 邓祎楠. X70管线钢液相扩散焊数值模拟 [D]. 北京: 北京石油化工学院, 2017: 11–66.

    DENG Y N. Numerical simulation of transient liquid phase welding of X70 pipeline steel [D]. Beijing: Beijing Institute of Petrochemical Technology, 2017: 11–66.
    [19] 王福山, 孙杨, 杨鑫华. 基于Battelle结构应力法的对接接头应力集中系数回归分析 [J]. 焊接技术, 2019, 48(6): 76–80.

    WANG F S, SUN Y, YANG X H. Regression analysis of stress concentration coefficient of butt joint based on battelle structural stress method [J]. Welding Technology, 2019, 48(6): 76–80.
    [20] 黄雄. 爆破荷载作用下埋地钢管的动力响应研究 [D]. 武汉: 武汉科技大学, 2018: 17–46.

    HUANG X. Dynamic response of buried steel pipe subjected to blast loads [D]. Wuhan: Wuhan University of Science and Technology, 2018: 17–46.
  • 加载中
图(7) / 表(7)
计量
  • 文章访问数:  6542
  • HTML全文浏览量:  3184
  • PDF下载量:  32
出版历程
  • 收稿日期:  2019-09-04
  • 修回日期:  2019-10-19

目录

    /

    返回文章
    返回