二次加压对六面顶压腔压力发生效率和压力密封性能的影响

张佳威 李强 王俊普 贺端威

张佳威, 李强, 王俊普, 贺端威. 二次加压对六面顶压腔压力发生效率和压力密封性能的影响[J]. 高压物理学报, 2019, 33(2): 020105. doi: 10.11858/gywlxb.20190703
引用本文: 张佳威, 李强, 王俊普, 贺端威. 二次加压对六面顶压腔压力发生效率和压力密封性能的影响[J]. 高压物理学报, 2019, 33(2): 020105. doi: 10.11858/gywlxb.20190703
ZHANG Jiawei, LI Qiang, WANG Junpu, HE Duanwei. Effect of Re-Compression on the Pressure-Generation Efficiency and Pressure-Seal Capability of Large Volume Cubic Press[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 020105. doi: 10.11858/gywlxb.20190703
Citation: ZHANG Jiawei, LI Qiang, WANG Junpu, HE Duanwei. Effect of Re-Compression on the Pressure-Generation Efficiency and Pressure-Seal Capability of Large Volume Cubic Press[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 020105. doi: 10.11858/gywlxb.20190703

二次加压对六面顶压腔压力发生效率和压力密封性能的影响

doi: 10.11858/gywlxb.20190703
基金项目: 国家重点研发计划(2018YFA0305900);国家自然科学基金(51472171, 11427810)
详细信息
    作者简介:

    张佳威(1992-),男,硕士研究生,主要从事大腔体静高压实验技术、超硬材料合成和材料的高压物性研究. E-mail: scujiaweizhang@163.com

    通讯作者:

    贺端威(1969-),男,博士,教授,主要从事高压物理、超硬材料、大腔体静高压技术研究. E-mail: duanweihe@scu.edu.cn

  • 中图分类号: O521.3

Effect of Re-Compression on the Pressure-Generation Efficiency and Pressure-Seal Capability of Large Volume Cubic Press

  • 摘要: 随着六面顶压机大腔体静高压技术的发展,复杂多变的压力加载工艺被应用于高压科学研究和材料制备,但是不同压力加载工艺对压力发生效率和压力密封性能的影响尚未被充分研究。本工作在六面顶压机高压腔体和密封边内置入电路,通过原位测量Bi、Tl、Ba和锰铜丝的电阻,标定了一次加压和二次加压两种不同压力加载工艺下外部加载与腔体压力及密封边压力的对应关系。实验分析结果表明,二次加压工艺会导致腔体和密封边的压力发生效率明显降低,同时也会降低压力密封性能最差时对应的外部加载。此研究可为高压装置和压力加载工艺的优化设计提供指导。

     

  • 图  六面顶压机工作过程简化示意图

    Figure  1.  Schematic illustration of work process for large volume cubic press

    图  用于观察传压介质压缩前后流变情况的组装

    Figure  2.  Assembly for observing the deformation of pressure transmitting medium before and after compression

    图  测量密封边压力的电路及组装示意

    Figure  3.  Schematic illustration of circuit and assembly used for measuring gasket pressure

    图  测量腔体压力的电路及组装示意

    Figure  4.  Schematic illustration of circuit and assembly used for measurement of Pc

    图  一次加压工艺和二次加压工艺的压力加载曲线

    Figure  5.  Press load curves of compression and re-compression

    图  一次加压和二次加压工艺下的PcPg与外部加载之间的关系

    Figure  6.  Pc and Pg as a function of the press load under the compressing process of compression and re-compression

    图  一次加压和二次加压下的ΔP与腔体压力之间的关系

    Figure  7.  Relation of ΔP vs. Pc under the compressing process of compression and re-compression

    表  1  利用Bi、Tl和Ba标定的腔体及密封边压力

    Table  1.   Pressure calibration results for cell and gasket using Bi, Tl and Ba

    Calibrated materialPhase
    change
    type
    Pressure/GPaPress load/MN
    Compression (Single)Re-compression
    CompressionDecompressionCompressionDecompression
    CellGasketCellGasketCellGasketCellGasket
    BiI–II2.552.08±0.22.86±0.31.70±0.53.19±0.51.73±0.22.77±0.21.52±0.42.77±0.6
    TlII–III3.683.58±0.34.00±0.22.46±0.63.88±0.33.81±0.34.29±0.32.49±0.53.33±0.4
    BaI–II5.5 6.37±0.36.30±0.25.54±0.36.03±0.27.28±0.46.58±0.4
    下载: 导出CSV
  • [1] HEMLEY R J, SOOS Z G, HANFLAND M, et al. Charge-transfer states in dense hydrogen charge-transfer states in dense hydrogen [J]. Nature, 1994, 369: 384–387. doi: 10.1038/369384a0
    [2] IRIFUNE T, KURIO A, SAKAMOTO S, et al. Ultrahard polycrystalline diamond from graphite [J]. Nature, 2003, 421: 599–600.
    [3] MA Y M, EREMETS M, OGANOV A R, et al. Transparent dense sodium [J]. Nature, 2009, 458: 182–185. doi: 10.1038/nature07786
    [4] OGANOV A R, ONO S. Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D” layer [J]. Nature, 2004, 430: 445–448. doi: 10.1038/nature02701
    [5] QIN J Q, HE D W, WANG J H, et al. Is rhenium diboride a superhard material? [J]. Advanced Materials, 2008, 20(24): 4780–4783. doi: 10.1002/adma.v20:24
    [6] TIAN Y J, XU B, YU D L, et al. Ultrahard nanotwinned cubic boron nitride [J]. Nature, 2013, 493: 385–388. doi: 10.1038/nature11728
    [7] XU C, HE D W, WANG H K, et al. Nano-polycrystalline diamond formation under ultra-high pressure [J]. International Journal of Refractory Metals and Hard Materials, 2013, 36: 232–237. doi: 10.1016/j.ijrmhm.2012.09.004
    [8] 彭放, 贺端威. 应用于高压科学研究的国产铰链式六面顶压机技术发展历程 [J]. 高压物理学报, 2018, 32(1): 010105

    PENG F, HE D W. Development of domestic hinge-type cubic presses based on high pressure scientific research [J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 010105
    [9] GUAN S X, PENG F, LIANG H, et al. Fragmentation and stress diversification in diamond powder under high pressure [J]. Journal of Applied Physics, 2018, 124(21): 215902. doi: 10.1063/1.5051749
    [10] LIANG A K, LIU Y J, LIANG H, et al. Thermal insulation performance of monoclinic ZrO2 and cubic ZrO2–CaO solid solution under high pressure and high temperature [J]. High Pressure Research, 2018, 38(4): 458–467. doi: 10.1080/08957959.2018.1517341
    [11] WANG P, HE D W, WANG L P, et al. Diamond-cBN alloy: a universal cutting material [J]. Applied Physics Letters, 2015, 107(10): 101901. doi: 10.1063/1.4929728
    [12] WU J J, LIU F M, ZHANG J W, et al. Cobalt-doped magnesium oxide pressure-transmitting medium for high pressure and high-temperature apparatus [J]. High Pressure Research, 2018, 38(4): 448–457. doi: 10.1080/08957959.2018.1510922
    [13] LIU J, ZHAN G D, WANG Q, et al. Superstrong micro-grained polycrystalline diamond compact through work hardening under high pressure [J]. Applied Physics Letters, 2018, 112(6): 061901. doi: 10.1063/1.5016110
    [14] LIU Y J, ZHANG J W, HE D W, et al. Exploring the compression behavior of HP-BiNbO4 under high pressure [J]. Chinese Physics B, 2017, 26(11): 116202. doi: 10.1088/1674-1056/26/11/116202
    [15] DING W, HAN J J, HU Q W, et al. Stress control of heterogeneous nanocrystalline diamond sphere through pressure-temperature tuning [J]. Applied Physics Letters, 2017, 110(12): 121908. doi: 10.1063/1.4979006
    [16] HAN Q G, MA H A, HUANG G F, et al. Hybrid-anvil: a suitable anvil for large volume cubic high pressure apparatus [J]. Review of Scientific Instruments, 2009, 80(9): 096107. doi: 10.1063/1.3227239
    [17] LIU X, CHEN J L, TANG J J, et al. A large volume cubic press with a pressure-generating capability up to about 10 GPa [J]. High Pressure Research, 2012, 32(2): 239–254.
    [18] 田金刚. 合成钻石: " 黑天鹅”的蜕变和突围 [EB/OL]. (2018-10-25)[2019-01-04]. http://www.gold.org.cn/zb1227/sd/201810/t20181025_180697.html.

    TIAN J G. Synthetic diamonds: the transformation and breakout of " Black swan” [EB/OL]. (2018-10-25)[2019-01-04]. http://www.gold.org.cn/zb1227/sd/201810/t20181025_180697.html.
    [19] FANG L M, HE D W, CHEN C, et al. Effect of precompression on pressure-transmitting efficiency of pyrophyllite gaskets [J]. High Pressure Research, 2007, 27(3): 367–374. doi: 10.1080/08957950701553796
    [20] ZHANG J W, LIU F M, WU J J, et al. Experimental study on the pressure-generation efficiency and pressure-seal mechanism for large volume cubic press [J]. Review of Scientific Instruments, 2018, 89(7): 075106. doi: 10.1063/1.5030092
    [21] SHATSKIY A, KATSURA T, LITASOV K D, et al. High pressure generation using scaled-up Kawai-cell [J]. Physics of the Earth and Planetary Interiors, 2011, 189(1): 92–108.
    [22] 王海阔, 任瑛, 贺端威, 等. 六面顶压机立方压腔内压强的定量测量及受力分析 [J]. 物理学报, 2017, 66(9): 090702 doi: 10.7498/aps.66.090702

    WANG H K, REN Y, HE D W, et al. Force analysis and pressure quantitative measurement for the high pressure cubic cell [J]. Acta Physica Sinica, 2017, 66(9): 090702 doi: 10.7498/aps.66.090702
    [23] WANG H K, HE D W, YAN X Z, et al. Quantitative measurements of pressure gradients for the pyrophyllite and magnesium oxide pressure-transmitting mediums to 8 GPa in a large-volume cubic cell [J]. High Pressure Research, 2011, 31(4): 581–591. doi: 10.1080/08957959.2011.614238
    [24] WANG H K, HE D W, TAN N, et al. Note: an anvil-preformed gasket system to extend the pressure range for large volume cubic presses [J]. Review of Scientific Instruments, 2010, 81(11): 116102. doi: 10.1063/1.3488606
    [25] WANG H K, HE D W. A hybrid pressure cell of pyrophyllite and magnesium oxide to extend the pressure range for large volume cubic presses [J]. High Pressure Research, 2012, 32(2): 186–194.
    [26] KAWAZOE T, NISHIYAMA N, NISHIHARA Y, et al. Pressure generation to 25 GPa using a cubic anvil apparatus with a multi-anvil 6-6 assembly [J]. High Pressure Research, 2010, 30(1): 167–174. doi: 10.1080/08957950903503912
    [27] LI R, XU B J, ZHANG Q C, et al. Finite-element analysis on pressure transfer mechanism in large-volume cubic press [J]. High Pressure Research, 2016, 36(4): 575–584. doi: 10.1080/08957959.2016.1238915
    [28] MAO H K, BELL P M. Electrical resistivity measurements of conductors in the diamond-window, high-pressure cell [J]. Review of Scientific Instruments, 1981, 52(4): 615–616. doi: 10.1063/1.1136650
    [29] ANDERSSON G, SUNDQVIST B, BÄCKSTRÖM G. A high-pressure cell for electrical resistance measurements at hydrostatic pressures up to 8 GPa: results for Bi, Ba, Ni, and Si [J]. Journal of Applied Physics, 1989, 65(10): 3943–3950. doi: 10.1063/1.343360
    [30] YAN X Z, REN X T, HE D W. Pressure calibration in solid pressure transmitting medium in large volume press [J]. Review of Scientific Instruments, 2016, 87(12): 125006. doi: 10.1063/1.4973448
    [31] SINGH A K. The kinetics of pressure-induced polymorphic transformations [J]. Bulletin of Materials Science, 1983, 5(3): 219–230.
    [32] DAVIDSON T E, LEE A P. The study of the structural and transformation characteristics of the pressure-induced polymorphs in bismuth [J]. Transactions of the Metallurgical Society of AIME, 1964, 230: 1035–1036.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  7520
  • HTML全文浏览量:  4041
  • PDF下载量:  53
出版历程
  • 收稿日期:  2019-01-04
  • 修回日期:  2019-02-01

目录

    /

    返回文章
    返回