聚脲涂层复合结构抗侵彻机理实验研究

高照 李永清 侯海量 李茂 朱锡

高照, 李永清, 侯海量, 李茂, 朱锡. 聚脲涂层复合结构抗侵彻机理实验研究[J]. 高压物理学报, 2019, 33(2): 025102. doi: 10.11858/gywlxb.20180619
引用本文: 高照, 李永清, 侯海量, 李茂, 朱锡. 聚脲涂层复合结构抗侵彻机理实验研究[J]. 高压物理学报, 2019, 33(2): 025102. doi: 10.11858/gywlxb.20180619
GAO Zhao, LI Yongqing, HOU Hailiang, LI Mao, ZHU Xi. Penetration Mechanism of Polyurea Coating Composite Structure[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 025102. doi: 10.11858/gywlxb.20180619
Citation: GAO Zhao, LI Yongqing, HOU Hailiang, LI Mao, ZHU Xi. Penetration Mechanism of Polyurea Coating Composite Structure[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 025102. doi: 10.11858/gywlxb.20180619

聚脲涂层复合结构抗侵彻机理实验研究

doi: 10.11858/gywlxb.20180619
基金项目: 国家自然科学基金(51479204,51679246)
详细信息
    作者简介:

    高 照(1993-),女,硕士,主要从事船舶结构力学研究. E-mail:gaozhao8686@163.com

    通讯作者:

    李永清(1976-),男,博士,副教授,硕士生导师,主要从事船舶结构力学研究. E-mail:liyongqing@126.com

  • 中图分类号: O385; O347.1

Penetration Mechanism of Polyurea Coating Composite Structure

  • 摘要: 为研究聚脲涂层复合靶板的抗侵彻性能,利用球形弹丸开展了相近面密度下的钢质靶板与喷涂聚脲涂层复合结构的弹道冲击实验,得到了钢靶与采用不同涂覆方式制备的聚脲涂层复合结构的抗侵彻性能,分析了失效模式和吸能机理。结果表明:冲击过程中,前聚脲涂层能有效缓冲弹体与钢靶之间的撞击载荷,使钢靶产生预变形,降低弹体的相对侵彻速度,延缓钢靶绝热剪切破坏的发生,提高复合结构的弹道极限;后聚脲涂层可与钢靶协调变形,形成冲塞质量块吸能,吸收弹体动能,在弹速较高时有较好的吸能能力。

     

  • 图  靶板结构

    Figure  1.  Structure of the target

    图  弹体变形破坏形貌

    Figure  2.  Deformation and failure morphology of projectiles

    图  钢板的典型破坏模式(工况1,vi=726.341 m/s)

    Figure  3.  Typical failure modes of steel target (Case 1, vi=726.341 m/s)

    图  靶板的典型破坏模式(工况3,vi=516.01 m/s)

    Figure  4.  Typical failure modes of target (Case 3, vi=516.01 m/s)

    图  靶板的典型破坏模式(工况3,vi= 809.331 m/s)

    Figure  5.  Typical failure modes of target (Case 3, vi= 809.331 m/s)

    图  靶板的典型破坏模式(工况4,vi=688.817 m/s)

    Figure  6.  Typical failure modes of target (Case 4, vi= 688.817 m/s)

    图  弹体侵彻靶板的初始速度-剩余速度曲线

    Figure  7.  Residual velocity vs. initial velocity of projectile penetrating target

    表  1  复合靶板结构

    Table  1.   Composite target structure

    CaseFront targetBack targetρt/(kg·m–2)
    14.0 mm steel31.2
    24.9 mm steel39.0
    34 mm steel4 mm polyurea35.28
    44 mm polyurea4 mm steel35.28
    54 mm steel8 mm polyurea39.36
    68 mm polyurea4 mm steel39.36
    下载: 导出CSV

    表  2  材料参数

    Table  2.   Material parameters

    MaterialE/GPaρ/(kg·m–3)νσy/MPaσb/MPaδs/%
    304 steel22079300.3280
    Q235 steel21078500.3235400–490 22
    Polyurea0.2310200.4 14162
    下载: 导出CSV

    表  3  弹体侵彻实验结果

    Table  3.   Experimental results of ballistic experiments

    CaseTargetvi/(m·s–1)vr/(m·s–1)CaseTargetvi/(m·s–1)vr/(m·s–1)
    14.0 mm S657.132287.69744 mm PU+4 mm S674.603291.320
    726.341325.858684.105300.965
    805.802380.740727.896331.513
    24.9 mm S561.149 58.816829.876386.320
    633.029123.92554 mm S+8 mm PU514.0000
    636.623126.146528.0320
    693.878191.269559.303 45.332
    750.718224.830588.337134.878
    801.509256.178607.577140.267
    803.743254.149608.664143.430
    34 mm S+4 mm PU511.3550688.817218.776
    516.0100713.386202.670
    562.262148.966790.514275.192
    629.513213.340825.644298.980
    674.469235.00168 mm PU+4 mm S564.5030
    767.494292.222625.805186.506
    809.331357.143657.005239.808
    860.977370.330756.396317.757
    44 mm PU+4 mm S561.327146.199776.610332.811
      Note: Steel and polyurea are represented by S and PU respectively.
    下载: 导出CSV

    表  4  靶板弹道极限及模型参数

    Table  4.   Ballistic limits and model constants of targets

    Caseapvbl/(m·s–1)Caseapvbl/(m·s–1)
    10.71681.6053482.4640.48214.8354555.29
    20.53291.5135530.5850.40122.9034557.34
    30.49662.2811516.0160.70061.8298564.44
    下载: 导出CSV
  • [1] SHIM J, MOHR D. Using split Hopkinson pressure bars to perform large strain compression tests on polyurea at low, intermediate and high strain rates [J]. International Journal of Impact Engineering, 2009, 36(9): 1116–1127. doi: 10.1016/j.ijimpeng.2008.12.010
    [2] SHIM J, MOHR D. Rate dependent finite strain constitutive model of polyurea [J]. International Journal of Plasticity, 2011, 27(6): 868–886. doi: 10.1016/j.ijplas.2010.10.001
    [3] 黄微波.喷涂聚脲弹性体技术[M].北京: 化学工业出版社, 2005.
    [4] ROLAND C M, FRAGIADAKIS D, GAMACHE R M. Elastomer–steel laminate armor [J]. Composite Structures, 2010, 92(5): 1059–1064. doi: 10.1016/j.compstruct.2009.09.057
    [5] YI J, BOYCE M C, LEE G F, et al. Large deformation rate-dependent stress–strain behavior of polyurea and polyurethanes [J]. Polymer, 2006, 47(1): 319–329. doi: 10.1016/j.polymer.2005.10.107
    [6] SARVA S S, DESCHANEL S, BOYCE M C, et al. Stress–strain behavior of a polyurea and a polyurethane from low to high strain rates [J]. Polymer, 2007, 48(8): 2208–2213. doi: 10.1016/j.polymer.2007.02.058
    [7] PATHAK J A, TWIGG J N, NUGENT K E, et al. Structure evolution in a polyurea segmented block copolymer because of mechanical deformation [J]. Macromolecules, 2008, 41(20): 7543–7548. doi: 10.1021/ma8011009
    [8] 甘云丹, 宋力, 杨黎明. 弹性体涂覆钢板抗冲击性能的数值模拟 [J]. 兵工学报, 2009, 30(2): 15–18

    GAN Y D, SONG L, YANG L M. Numerical simulation for anti-blast performances of steel plate coated with elastomer [J]. Acta Armamentarii, 2009, 30(2): 15–18
    [9] 宋彬, 黄正祥, 翟文, 等. 聚脲弹性体夹芯防爆罐抗爆性能研究 [J]. 振动与冲击, 2016, 35(7): 138–144

    SONG B, HUANG Z X, ZHAI W, et al. Anti-detonation properties of explosion-proof pots made of sandwich structures with polyurea elastomer [J]. Journal of Vibration and Shock, 2016, 35(7): 138–144
    [10] 侯海量, 朱锡, 谷美邦, 等. 破片模拟弹侵彻钢板的有限元分析 [J]. 海军工程大学学报, 2006, 18(3): 78–83 doi: 10.3969/j.issn.1009-3486.2006.03.019

    HOU H L, ZHU X, GU M B, et al. Investigation on penetration of steel plate by fragment simulated projectile using finite element method [J]. Journal of Naval University of Engineering, 2006, 18(3): 78–83 doi: 10.3969/j.issn.1009-3486.2006.03.019
    [11] 邓云飞, 张伟, 孟凡柱, 等. Q235钢单层板对平头刚性弹抗穿甲特性研究 [J]. 振动与冲击, 2015, 43(2): 74–78

    DENG Y F, ZHANG W, MENG F Z, et al. Ballistic resistance of Q235 steel monolithic plates impacted by rigid blunt-nosed projectiles [J]. Journal of Vibration and Shock, 2015, 43(2): 74–78
    [12] AMIRKHIZI A V, ISAACS J, MCGEE J, et al. An experimentally-based viscoelastic constitutive model for polyurea, including pressure and temperature effects [J]. Philosophical Magazine, 2006, 86(36): 5847–5866. doi: 10.1080/14786430600833198
    [13] RECHT R F, IPSON T W. Ballistic perforation dynamics [J]. Journal of Applied Mechanics, 1963, 30(3): 384–390. doi: 10.1115/1.3636566
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  10134
  • HTML全文浏览量:  4285
  • PDF下载量:  64
出版历程
  • 收稿日期:  2018-08-22
  • 修回日期:  2018-09-10

目录

    /

    返回文章
    返回