混凝土靶体预开孔对弹丸侵彻性能的影响

王洪波 杨世全 谢若泽 钱立新 卢永刚

王洪波, 杨世全, 谢若泽, 钱立新, 卢永刚. 混凝土靶体预开孔对弹丸侵彻性能的影响[J]. 高压物理学报, 2015, 29(1): 69-74. doi: 10.11858/gywlxb.2015.01.012
引用本文: 王洪波, 杨世全, 谢若泽, 钱立新, 卢永刚. 混凝土靶体预开孔对弹丸侵彻性能的影响[J]. 高压物理学报, 2015, 29(1): 69-74. doi: 10.11858/gywlxb.2015.01.012
WANG Hong-Bo, YANG Shi-Quan, XIE Ruo-Ze, QIAN Li-Xin, LU Yong-Gang. Influence of Concrete Target with Pre-Drilled Cavities on the Penetration Performance of a Projectile[J]. Chinese Journal of High Pressure Physics, 2015, 29(1): 69-74. doi: 10.11858/gywlxb.2015.01.012
Citation: WANG Hong-Bo, YANG Shi-Quan, XIE Ruo-Ze, QIAN Li-Xin, LU Yong-Gang. Influence of Concrete Target with Pre-Drilled Cavities on the Penetration Performance of a Projectile[J]. Chinese Journal of High Pressure Physics, 2015, 29(1): 69-74. doi: 10.11858/gywlxb.2015.01.012

混凝土靶体预开孔对弹丸侵彻性能的影响

doi: 10.11858/gywlxb.2015.01.012
基金项目: 国家自然科学基金(11002134);中国工程物理研究院总体工程研究所创新基金(11CXJ12)
详细信息
    作者简介:

    王洪波(1986—),女,硕士,工程师,主要从事常规战斗部研制相关研究.E-mail:414wanghb@caep.cn

  • 中图分类号: 0347.3

Influence of Concrete Target with Pre-Drilled Cavities on the Penetration Performance of a Projectile

  • 摘要: 根据串联战斗部对混凝土目标的毁伤模式,将其前、后级的作用过程进行分解,结合前级对目标的预破坏,运用数值模拟分析了混凝土靶体预开孔对弹丸侵彻性能的影响,并通过实验进行了部分验证。结果表明:相同靶体开孔深度一定条件下,随着开孔数量的增加,弹丸的侵深逐渐增加,但当开孔数量增大到一定程度时,其对弹丸侵深的提高并不是很明显;当弹丸侵深未超过开孔深度时,随开孔数量增加,弹丸侵彻过载明显下降,而当弹丸侵深超过开孔深度后,开孔数量对弹丸侵彻过载的影响则不大。相同靶体开孔数量一定条件下,随着开孔深度的增加,弹丸的侵深逐渐增加;当弹丸侵深未超过开孔深度时,弹丸的侵彻过载出现明显的下降段,且开孔越深,下降段越长;而当弹丸侵深超过开孔深度后,开孔深度对弹丸侵彻过载的影响则不大。研究结果可为串联战斗部的前、后级优化设计提供参考。

     

  • 图  弹丸示意图

    Figure  1.  Sketch of the projectile

    图  靶体开孔布置示意图

    Figure  2.  Sketch of pre-drilled cavities distribution in concrete target

    图  不同开孔数量的混凝土靶体对弹丸侵彻性能的影响

    Figure  3.  The influence of concrete target with different numbers of pre-drilled cavities on the penetration performance of the projectile

    图  不同开孔深度的混凝土靶体对弹丸侵彻性能的影响

    Figure  4.  The influence of concrete target with different depthes of pre-drilled cavities on the penetration performance of the projectile

    图  不同开孔数量的混凝土靶体中弹丸侵深随靶体开孔深度的变化关系

    Figure  5.  Penetration depth of projectile versus the depth of pre-drilled cavities in concrete target

    图  弹丸实物图

    Figure  6.  The projectile

    图  不同开孔数量混凝土靶体实验前、后状态

    Figure  7.  The state of concrete target with different numbers of pre-drilled cavities before and after test

    图  弹丸侵深随靶体开孔数量的变化关系

    Figure  8.  Penetration depth of projectile versus the number of pre-drilled cavities in concrete target

    图  弹丸侵深随靶体开孔深度的变化关系

    Figure  9.  Penetration depth of projectile versus the depth of pre-drilled cavities in concrete target

    表  1  弹丸壳体材料参数

    Table  1.   Material parameters of the shell of projectile

    ρ/(kg/m3) E/(GPa) ν σ0.2/(GPa) Ep/(GPa) c/(m/s) P β
    7 850 210 0.3 1.44 2.1 16 2.47 0.5
    下载: 导出CSV

    表  2  靶体材料参数

    Table  2.   Material parameters of target

    A B N C fc/(MPa) Smax G/(GPa) K1/(GPa) K2/(GPa)
    0.79 1.6 0.61 0.007 40 7.0 14.86 85 -171
    K3/(GPa) pcrush/(MPa) μcrush plock/(MPa) μlock T/(MPa) D1 D2 ef, min
    208 13 0.001 700.0 0.10 4.0 0.04 1.0 0.01
    下载: 导出CSV

    表  3  实验工况及结果

    Table  3.   Test and correspongding

    No. Initial mass
    of projectile
    /(g)
    Numbers of
    pre-drilled
    cavities
    Depth of
    pre-drilled
    cavities/(mm)
    Velocity
    /(m/s)
    Projectile mass
    after test
    /(g)
    Losing mass
    of projectile
    /(%)
    Penetration
    depth
    /(mm)
    Dimension of
    projectile cavity
    /(mm×mm×mm)
    1 304.43 0 0 299 303.08 0.44 101 270×275×63
    2 302.04 1 90 306 300.77 0.42 104 275×290×67
    3 303.29 3 90 294 302.03 0.42 112 270×268×67
    4 304.09 4 90 297 302.85 0.41 123 250×330×75
    5 301.88 4 60 298 300.56 0.44 115 250×210×55
    6 302.87 4 30 297 301.57 0.43 115 210×220×65
    7 307.66 3 60 274 306.37 0.42 98 340×295×62
    8 304.30 3 60 322 302.73 0.52 133 235×220×55
    9 305.26 3 30 288 304.04 0.40 104 210×230×65
    10 303.47 3 60 314 301.94 0.50 121 270×240×57
    下载: 导出CSV
  • [1] Murphy M J, Baum D W, Kuklo R M, et al. Effect of multiple and delayed jet impact and penetration on contrete target borehole diameter[C]//19th International Symposium on Ballistics. Inetrlaken, Switzerland, 2001.
    [2] Murphy M J, Kuklo R M, Rambur T A, et al. Single and multiple jet penetration experiments into geologic materials[C]//21st International Symposium on Ballistics. Adelaide, Austria, 2004.
    [3] Heider N. Numerical simulation of the penetration process of geopenetrator into predamaged concrete targets[C]//20th International Symposium on Ballistics. Orlando, FL, 2002.
    [4] 杨世全, 常敬臻, 卢永刚, 等.战斗部对预开孔混凝土靶侵彻的数值模拟研究[J].防护工程, 2012, 34(1): 35-39. http://d.wanfangdata.com.cn/periodical/fhgc201201008

    Yang S Q, Chang J Z, Lu Y G, et al. Numerical simulation of warhead penetrating pre-borehole concrete target[J]. Protective Engineering, 2012, 34(1): 35-39. (in Chinese) http://d.wanfangdata.com.cn/periodical/fhgc201201008
    [5] Livermore Software Technology Corporation. LS-DYNA 960 User Manual(Volume 2)[Z]. Livermore, CA: Livermore Software Technology Corporation, 2001.
    [6] Holmquist T J. A computational constitutive model for concrete subjected to large strains, high strain rate, and high pressures[C]//14th International Symposium on Ballistics. Québec, Canada, 1993: 591-600.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  6286
  • HTML全文浏览量:  2048
  • PDF下载量:  228
出版历程
  • 收稿日期:  2013-03-11
  • 修回日期:  2013-04-19

目录

    /

    返回文章
    返回