基于地质聚合物混凝土的SHPB实验参数控制

罗鑫 许金余 苏灏扬 李志武 白二雷

罗鑫, 许金余, 苏灏扬, 李志武, 白二雷. 基于地质聚合物混凝土的SHPB实验参数控制[J]. 高压物理学报, 2014, 28(4): 416-422. doi: 10.11858/gywlxb.2014.04.005
引用本文: 罗鑫, 许金余, 苏灏扬, 李志武, 白二雷. 基于地质聚合物混凝土的SHPB实验参数控制[J]. 高压物理学报, 2014, 28(4): 416-422. doi: 10.11858/gywlxb.2014.04.005
LUO Xin, XU Jin-Yu, SU Hao-Yang, LI Zhi-Wu, BAI Er-Lei. Experimental Parameter Control of SHPB Based on the Geopolymer Concrete[J]. Chinese Journal of High Pressure Physics, 2014, 28(4): 416-422. doi: 10.11858/gywlxb.2014.04.005
Citation: LUO Xin, XU Jin-Yu, SU Hao-Yang, LI Zhi-Wu, BAI Er-Lei. Experimental Parameter Control of SHPB Based on the Geopolymer Concrete[J]. Chinese Journal of High Pressure Physics, 2014, 28(4): 416-422. doi: 10.11858/gywlxb.2014.04.005

基于地质聚合物混凝土的SHPB实验参数控制

doi: 10.11858/gywlxb.2014.04.005
基金项目: 国家自然科学基金(51208507, 51378497);陕西省科技发展工业攻关项目(2014K10-15);陕西省青年科技新星项目(2013KJXX-81);空军工程大学优秀博士学位论文扶持基金(KGD082314005)
详细信息
    作者简介:

    罗鑫(1986-), 男, 硕士研究生, 主要从事防护工程研究.E-mail:13630283725@163.com

    通讯作者:

    许金余(1963-), 男, 教授, 博士生导师, 主要从事结构工程与防护工程研究.E-mail:jinyuxu@263.net

  • 中图分类号: O347;TU528

Experimental Parameter Control of SHPB Based on the Geopolymer Concrete

  • 摘要: 为有效地测试地质聚合物混凝土的冲击力学特性,以矿渣、粉煤灰为原材料,制备了高流态的C30地质聚合物混凝土,探索了此类混凝土的霍普金森压杆(SHPB)实验技术参数的控制规律,得到了射弹速度、整形器直径与最佳近似恒应变率之间的关系。结果表明:波形整形技术消除了波形振荡现象,有效地降低了弥散效应;整形后应力波形的前沿升时远远高于传统矩形波的前沿升时,保证了应力的均匀性;通过组合控制射弹速度和整形器直径,实现了恒应变率加载。

     

  • 图  塌落度测试

    Figure  1.  Slump test

    图  ∅100 mm SHPB装置

    Figure  2.  ∅100 mm SHPB apparatus

    图  波形整形器

    Figure  3.  Pulse shaper

    图  采用不同规格整形器时典型的入射波

    Figure  4.  Typical incident waves under the conditions of different pulse shapers

    图  采用直径为22 mm的整形器时实测的应变曲线

    Figure  5.  Measured strain-time curves with a 22 mm diameter pulse shaper

    图  典型的应力均匀性因子时程曲线

    Figure  6.  Typical curve of stress equilibrium factor with time

    图  $\bar{\dot{\varepsilon }}$与v之间的关系

    Figure  7.  Correlativity between $\bar{\dot{\varepsilon }}$ and v

    图  采用直径为20 mm的整形器时测得的应变率时程曲线

    Figure  8.  Measured strain rate-time curves with a 20 mm diameter pulse shaper

    图  采用不同直径的整形器时获得的最佳应变率时程曲线

    Figure  9.  Optimum strain rate-time curves with different pulse shapers

    图  10  $\bar{\dot{\varepsilon }}_{\text {optimum }}$与d之间的关系

    Figure  10.  Correlativity between $\bar{\dot{\varepsilon }}_{\text {optimum }}$ and d

    表  1  矿渣和粉煤灰的化学组成(质量分数)

    Table  1.   Chemical compositions of slag and fly ash (Mass fraction) (%)

    Material SiO2 Al2O3 Fe2O3 CaO Na2O TiO2 MgO K2O P2O5 SO3
    Slag 29.2 19.4 5.8 38.6 0.2 0.6 2.8 0.1 2.6
    Fly ash 45.8 21.4 12.6 13.7 1.1 0.2 1.3 1.8 0.1 1.9
    下载: 导出CSV

    表  2  ${{{\bar{\dot{\varepsilon }}}}_{\text{optimum}}}$与dv的关系

    Table  2.   Relationship among ${{{\bar{\dot{\varepsilon }}}}_{\text{optimum}}}$, d and v

    ${{{\bar{\dot{\varepsilon }}}}_{\text{optimum}}}$/(s-1) d/(mm) v/(m/s)
    10 8.2 2.59
    20 15.9 3.58
    30 20.4 4.57
    40 23.6 5.56
    50 26.0 6.55
    60 28.1 7.54
    70 29.8 8.53
    80 31.3 9.52
    90 32.6 10.51
    100 33.7 11.50
    110 34.8 12.50
    120 35.8 13.49
    130 36.7 14.48
    140 37.5 15.47
    150 38.2 16.46
    160 39.0 17.45
    下载: 导出CSV
  • [1] Purdon A O. The action of alkalis on blast-furnace slag[J]. J Soc Chem Ind, 1940, 59: 191-202. doi: 10.1002/jctb.5000591202
    [2] Shi C J, Krivenko P, Roy D. Alkali-Activated Cements and Concretes[M]. Boca Raton, USA: CRC Press, 2006.
    [3] Shen X D, Yan S, Wu X Q, et al. Immobilization of stimulated high level wastes into AASC waste form[J]. Cem Concr Res, 1994, 24(1), 133-138. doi: 10.1016/0008-8846(94)90094-9
    [4] Shi C, Fernndez-Jiménez A. Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements[J]. J Hazard Mater, 2006, 137(3): 1656-1663. doi: 10.1016/j.jhazmat.2006.05.008
    [5] Duxson P, Lukey G C, van Deventer J S J. The thermal evolution of metakaolin geopolymers: Part 2 Phase stability and structural development[J]. J Non-Cryst Solids, 2007, 353(22/23): 2186-2200. http://www.sciencedirect.com/science/article/pii/S0022309307003080
    [6] Talling B, Brandstetr J. Present state and future of alkali-activated slag concrete[C]//Proeeedings of 3rd International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete. Trondheim, Norway, 1989.
    [7] Mirandaa J M, Fernndez-Jiménezb A, Gonzlez J A, et al. Corrosion resistance in activated fly ash mortars[J]. Cem Concr Res, 2005, 35(5): 1210-1217. http://www.sciencedirect.com/science/article/pii/S0008884604003515
    [8] Bakharev T. Durability of geopolymer materials in sodium and magnesium sulfate solutions[J]. Cem Concr Res, 2005, 35(6): 1233-1246. doi: 10.1016/j.cemconres.2004.09.002
    [9] Jambunathan N, Sanjayan J G, Pan Z, et al. The role of alumina on performance of alkali-activated slag paste exposed to 50 ℃[J]. Cem Concr Res, 2013, 54: 143-150. doi: 10.1016/j.cemconres.2013.09.009
    [10] Shaikh F U A. Review of mechanical properties of short fibre reinforced geopolymer composites[J]. Constr Build Mater, 2013, 43: 37-49. doi: 10.1016/j.conbuildmat.2013.01.026
    [11] Luo X, Xu J Y, Bai E L, et al. Mechanical properties of ceramics-cement based porous material under impact loading[J]. Mater Des, 2014, 55: 778-784. doi: 10.1016/j.matdes.2013.10.046
    [12] 许金余, 罗鑫, 吴菲, 等.地质聚合物混凝土动态劈裂拉伸破坏的吸能特性[J].空军工程大学学报(自然科学版), 2013, 14(5): 85-88. http://d.wanfangdata.com.cn/Periodical/kjgcdxxb201305020

    Xu J Y, Luo X, Wu F, et al. Energy absorption capacities of geopolymer concrete under condition of dynamic splitting-tensile damage[J]. Journal of Air Force Engineering University(Natural Science Edition), 2013, 14(5): 85-88. (in Chinese) http://d.wanfangdata.com.cn/Periodical/kjgcdxxb201305020
    [13] 王礼立, 朱兆祥.应力波基础[M].北京: 国防工业出版社, 2005.

    Wang L L, Zhu Z X. Foundation of Stress Waves[M]. Beijing: National Defense Industry Press, 2005. (in Chinese)
    [14] Frew D J, Forrestal M J, Chen W. Pulse shaping techniques for testing brittle materials with a split hopkinson pressure bar[J]. Exp Mech, 2002, 42(1): 93-106. doi: 10.1007/BF02411056
    [15] Li W M, Xu J Y. Impact characterization of basalt fiber reinforced geopolymeric concrete using a 100-mm-diameter split Hopkinson pressure bar[J]. Mater Sci Eng A, 2009, 513: 145-153. http://www.sciencedirect.com/science/article/pii/S0921509309001890
    [16] Lok T S, Zhao P J. Impact response of steel fiber-reinforced concrete using a split Hopkinson pressure bar[J]. J Mater Civ Eng, 2004, 16(1): 54-59. doi: 10.1061/(ASCE)0899-1561(2004)16:1(54)
    [17] Lee O S, Kim S H, Han Y H. Thickness effect of pulse shaper on dynamic stress equilibrium and dynamic deformation behavior in the polycarbonate using SHPB technique[J]. J Exp Mech, 2006, 21(1): 51-60. http://www.cqvip.com/Main/Detail.aspx?id=21314398
    [18] 左宇军, 唐春安, 朱万成, 等.岩石类介质SHPB试验加载波形的数值分析[J].东北大学学报(自然科学版), 2007, 28(6): 859-862.

    Zuo Y J, Tang C A, Zhu W C, et al. Numerical analysis of loading waveform in SHPB tests of rock-like medium[J]. Journal of Northeastern University(Natural Science), 2007, 28(6): 859-862. (in Chinese)
    [19] 刘孝敏, 胡时胜.大直径SHPB弥散效应的二维数值分析[J].实验力学, 2000, 15(4): 371-376. http://www.cnki.com.cn/Article/CJFDTotal-SYLX200004002.htm

    Liu X M, Hu S S. Two-dimensional numerical analysis for the dispersion of stress waves in large-diameter-SHPB[J]. Journal of Experimental Mechanics, 2000, 15(4): 371-376. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-SYLX200004002.htm
    [20] 李夕兵, 古德生.岩石冲击动力学[M].长沙: 中南工业大学出版社, 1994.

    Li X B, Gu D S. Rock Impact Dynamics[M]. Changsha: Central South University of Technology Press, 1994. (in Chinese)
    [21] 罗鑫, 许金余, 李为民, 等.应力脉冲在SHPB实验中弥散效应的数值模拟与频谱分析[J].实验力学, 2010, 25(4): 451-456. http://www.cnki.com.cn/Article/CJFDTotal-SYLX201004015.htm

    Luo X, Xu J Y, Li W M, et al. Numerical simulation and spectrum analysis of dispersion effect of stress pulse in SHPB experiment[J]. Journal of Experimental Mechanics, 2010, 25(4): 451-456. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-SYLX201004015.htm
    [22] 周子龙, 李夕兵, 赵国彦, 等.岩石类SHPB实验理想加载波形的三维数值分析[J].矿冶工程, 2005, 25(3): 18-20. http://d.wanfangdata.com.cn/Periodical/kygc200503006

    Zhou Z L, Li X B, Zhao G Y, et al. Three dimensional numerical analysis of perfect loading wave form of rock with SHPB[J]. Mining and Metallurgical Engineering, 2005, 25(3): 18-20. (in Chinese) http://d.wanfangdata.com.cn/Periodical/kygc200503006
    [23] Ravichandran G, Subhash G. Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar[J]. J Am Ceram Soc, 1994, 77(1): 263-267. doi: 10.1111/j.1151-2916.1994.tb06987.x
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  6950
  • HTML全文浏览量:  2384
  • PDF下载量:  211
出版历程
  • 收稿日期:  2012-06-06
  • 修回日期:  2012-08-22

目录

    /

    返回文章
    返回