飞秒激光驱动超高应变率加载下铝材料的层裂特性

辛建婷 席涛 范伟 何卫华 李纲 赵永强 税敏 储根柏

辛建婷, 席涛, 范伟, 何卫华, 李纲, 赵永强, 税敏, 储根柏. 飞秒激光驱动超高应变率加载下铝材料的层裂特性[J]. 高压物理学报, 2022, 36(3): 034102. doi: 10.11858/gywlxb.20210904
引用本文: 辛建婷, 席涛, 范伟, 何卫华, 李纲, 赵永强, 税敏, 储根柏. 飞秒激光驱动超高应变率加载下铝材料的层裂特性[J]. 高压物理学报, 2022, 36(3): 034102. doi: 10.11858/gywlxb.20210904
XIN Jianting, XI Tao, FAN Wei, HE Weihua, LI Gang, ZHAO Yongqiang, SHUI Min, CHU Genbai. The Spallation Characteristics of Al under Ultra-High Strain Rate Loading Driven by Femtosecond Laser[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 034102. doi: 10.11858/gywlxb.20210904
Citation: XIN Jianting, XI Tao, FAN Wei, HE Weihua, LI Gang, ZHAO Yongqiang, SHUI Min, CHU Genbai. The Spallation Characteristics of Al under Ultra-High Strain Rate Loading Driven by Femtosecond Laser[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 034102. doi: 10.11858/gywlxb.20210904

飞秒激光驱动超高应变率加载下铝材料的层裂特性

doi: 10.11858/gywlxb.20210904
详细信息
    作者简介:

    辛建婷(1975-), 女, 硕士, 副研究员, 主要从事强激光加载下材料的动态特性研究.E-mail:jane_xjt@126.com

  • 中图分类号: O347.1; TB31

The Spallation Characteristics of Al under Ultra-High Strain Rate Loading Driven by Femtosecond Laser

  • 摘要: 层裂损伤是材料动态损伤破坏研究中最重要的问题之一,其损伤特性和机制随加载应变率不同表现出明显的阶段性规律。超高应变率条件下材料层裂损伤特性、规律和机制研究已成为极端条件下材料动态响应研究的重要内容,在工程应用和基础研究领域均有重要意义。采用飞秒激光驱动冲击加载技术开展了超高应变率条件下铝材料的层裂损伤实验研究,利用啁啾频域干涉超快诊断方法对铝材料的层裂损伤过程进行了诊断,分析并获得了在109 s−1应变率条件下铝材料的层裂强度约为7 GPa,结合前人的研究数据,解读了铝材料层裂强度随应变率的变化规律。

     

  • 图  铝材料层裂实验示意图

    Figure  1.  Schematic diagram of the aluminum spallation experiment

    图  铝样品自由面位移时频谱相移

    Figure  2.  Phase shift data of shocked Al sample

    图  铝样品自由面位移随时间的变化曲线

    Figure  3.  Free surface displacement history curves of Al samples obtained by multiple experiments

    图  飞秒激光加载下铝的自由面位移曲线(a)和速度剖面(b)

    Figure  4.  Displacement curve (a) and velocity profile (b) of Al sample on free surface loaded by femtosecond laser

    图  铝材料层裂强度随应变率的变化

    Figure  5.  Variation of spalling strength of aluminum with strain rate

    图  铝样品层裂片的显微图像

    Figure  6.  Microscopic images of spall layer of Al sample

    图  铝样品层裂区剖面的显微图像

    Figure  7.  Section microscopic images of spallation zone of Al sample

  • [1] WHITEMAN P. Preliminary report on the effect of stress rate on the dynamic fracture in steel, brass and aluminium: UNDEX 445 AWRE-SWAN-10/61 [R]. AWRE Report, 1962.
    [2] SKIDMORE I C. Introduction to shock waves in solids [J]. Applied Materials and Research, 1965, 4(3): 131–147.
    [3] 庄仕明, 丰树平, 王春彦, 等. 高应变率下TC4及TC9钛合金的动态断裂 [J]. 高压物理学报, 1995, 9(2): 96–106. doi: 10.11858/gywlxb.1995.02.003

    ZHUANG S M, FENG S P, WANG C Y, et al. Dynamic fracture of TC4 and TC9 titanium alloy under high strain rates [J]. Chinese Journal of High Pressure Physics, 1995, 9(2): 96–106. doi: 10.11858/gywlxb.1995.02.003
    [4] TAMURA H, KOHAMA T, KONDO K, et al. Femtosecond-laser-induced spallation in aluminum [J]. Journal of Applied Physics, 2001, 89(6): 3520–3522. doi: 10.1063/1.1346996
    [5] CUQ-LELANDAIS J P, BOUSTIE M, BERTHE L, et al. Spallation generated by femtosecond laser driven shocks in thin metallic targets [J]. Journal of Physics D: Applied Physics, 2009, 42(6): 065402. doi: 10.1088/0022-3727/42/6/065402
    [6] ASHITKOV S I, KOMAROV P S, OVCHINNIKOV A V, et al. Deformation dynamics and spallation strength of aluminium under a single-pulse action of a femtosecond laser [J]. Quantum Electronics, 2013, 43(3): 242–245. doi: 10.1070/QE2013v043n03ABEH015104
    [7] ASHITKOV S I, KOMAPOV P S, AGRANAT M B, et al. Measurements of strength of metals in a picosecond time range [J]. Journal of Physics: Conference Series, 2014, 500(11): 112006. doi: 10.1088/1742-6596/500/11/112006
    [8] ASHITKOV S I, KOMAROV P S, STRULEVA E V, et al. The behavior of tantalum under ultrashort loads induced by femtosecond laser [J]. Journal of Physics: Conference Series, 2015, 653: 012001. doi: 10.1088/1742-6596/653/1/012001
    [9] ASHITKOV S I, ZHAKHOVSKY V V, INOGAMOV N A, et al. The behavior of iron under ultrafast shock loading driven by a femtosecond laser [J]. AIP Conference Proceedings, 2017, 1793(1): 100035. doi: 10.1063/1.4971660
    [10] CUQ-LELANDAIS J P, BOUSTIE M, SOULARD L, et al. Study of spallation by sub-picosecond laser driven shocks in metals [C]//New Models and Hydrocodes for Shock Wave Processes in Condensed Matter. EDP Sciences, 2010: 00014.
    [11] CUQ-LELANDAIS J P, BOUSTIE M, BERTHE L, et al. Behaviour of metals at ultra-high strain rate by using femtosecond laser shockwaves [C]//10th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading. EDP Sciences, 2012: 04013.
    [12] 范伟, 谷渝秋, 朱斌, 等. 一种超快时间分辨速度干涉仪的设计和理论研究 [J]. 物理学报, 2014, 63(6): 060703. doi: 10.7498/aps.63.060703

    FAN W, GU Y Q, ZHU B, et al. Design and theoretical research of an ultrafast time-resolved velocity interferometer [J]. Acta Physica Sinica, 2014, 63(6): 060703. doi: 10.7498/aps.63.060703
    [13] FAN W, ZHU B, WU Y Z, et al. Measurement of the chirp characteristics of linearly chirped pulses by a frequency domain interference method [J]. Optics Express, 2013, 21(11): 13062–13067. doi: 10.1364/OE.21.013062
    [14] 李维新. 一维不定常流与冲击波 [M]. 北京: 国防工业出版社, 2003: 245−255.

    LI W X. One-dimensional nonsteady flow and shock waves [M]. Beijing: National Defense Industry Press, 2003: 245−255.
    [15] PEDRAZAS N A, WORTHINGTON D L, DALTON D A, et al. Effects of microstructure and composition on spall fracture in aluminum [J]. Materials Science and Engineering: A, 2012, 536: 117–123. doi: 10.1016/j.msea.2011.12.083
    [16] ISBELL W M, CHRISTMAN D R. Hock propagation and fracture in 6061-T6 aluminum from wave profile measurements [R]. General Motors Technical Center Warren Mi Materials and Structures Lab, 1970.
    [17] EK D R, ASAY J R. The stress and strain-rate dependence of spall strength in two aluminum alloys [M]//Shock Waves in Condensed Matter. Boston, MA, 1986: 413−418.
    [18] KREER J R. Dynamic fracture in 6061-T6 aluminum [R]. Kirtland Afb, New Mexico: Air Force Weapons Lab, 1971.
    [19] MOSHE E, ELIEZER S, DEKEL E, et al. An increase of the spall strength in aluminum, copper, and Metglas at strain rates larger than 107 s-1 [J]. Journal of Applied Physics, 1998, 83(8): 4004–4011. doi: 10.1063/1.367222
    [20] MOSHE E, ELIEZER S, HENIS Z, et al. Experimental measurements of the strength of metals approaching the theoretical limit predicted by the equation of state [J]. Applied Physics Letters, 2000, 76(12): 1555–1557. doi: 10.1063/1.126094
    [21] FORTOV V E, KOSTIN V V, ELIEZER S. Spallation of metals under laser irradiation [J]. Journal of Applied Physics, 1991, 70(8): 4524–4531. doi: 10.1063/1.349087
  • 加载中
图(7)
计量
  • 文章访问数:  1063
  • HTML全文浏览量:  448
  • PDF下载量:  42
出版历程
  • 收稿日期:  2021-11-17
  • 修回日期:  2021-12-07
  • 录用日期:  2021-12-14
  • 刊出日期:  2022-05-30

目录

    /

    返回文章
    返回