电子互连导电胶的力学性能及胶连点跌落冲击行为

熊蘅 马宇宏 司博文 肖革胜 树学峰

熊蘅, 马宇宏, 司博文, 肖革胜, 树学峰. 电子互连导电胶的力学性能及胶连点跌落冲击行为[J]. 高压物理学报, 2022, 36(3): 034103. doi: 10.11858/gywlxb.20210902
引用本文: 熊蘅, 马宇宏, 司博文, 肖革胜, 树学峰. 电子互连导电胶的力学性能及胶连点跌落冲击行为[J]. 高压物理学报, 2022, 36(3): 034103. doi: 10.11858/gywlxb.20210902
XIONG Heng, MA Yuhong, SI Bowen, XIAO Gesheng, SHU Xuefeng. Mechanical Properties of Electronic Interconnected Conductive Adhesive and Drop Impact Behavior of Adhesive Bonding Point[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 034103. doi: 10.11858/gywlxb.20210902
Citation: XIONG Heng, MA Yuhong, SI Bowen, XIAO Gesheng, SHU Xuefeng. Mechanical Properties of Electronic Interconnected Conductive Adhesive and Drop Impact Behavior of Adhesive Bonding Point[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 034103. doi: 10.11858/gywlxb.20210902

电子互连导电胶的力学性能及胶连点跌落冲击行为

doi: 10.11858/gywlxb.20210902
基金项目: 国家自然科学基金(11802198);中国博士后科学基金(2021M702605)
详细信息
    作者简介:

    熊 蘅(1991-), 男, 硕士研究生, 主要从事导电胶力学性能研究. E-mail:xh895111430@163.com

    通讯作者:

    肖革胜(1989-), 男, 博士, 副教授, 主要从事电子互连材料力学行为及封装结构可靠性研究.E-mail:xiaogesheng@tyut.edu.cn

  • 中图分类号: O347

Mechanical Properties of Electronic Interconnected Conductive Adhesive and Drop Impact Behavior of Adhesive Bonding Point

  • 摘要: 电子互连导电胶在便携式电子产品中具有广泛的应用前景,其在服役过程中常承受跌落冲击工况,导致微小导电胶互连点处产生相对较高的应变率,因此关于导电胶在较高应变率下的力学行为及胶连点跌落可靠性研究显得尤为重要。以环氧树脂基添加银导电颗粒各向同性导电胶(ICA)为研究对象,采用万能试验机和分离式霍普金森压杆装置对其开展不同应变率下的力学性能研究,在此基础上进行导电胶互连封装结构的跌落冲击数值模拟分析。结果表明:固化导电胶在动态时具有明显的应变率效应;跌落冲击时,关键胶连点出现在4个边角处且小角度跌落比水平跌落更危险;两种跌落方式中,基座长边跌落方式在关键胶连点处产生的应力、应变相对较大。

     

  • 图  各向同性固化导电胶试样(a)及其SEM图像(b)

    Figure  1.  Test sample (a) and SEM image (b) of cured ICA

    图  各向同性固化导电胶的准静态(a)和动态(b)真应力-应变曲线

    Figure  2.  Quasi-static (a) and dynamic (b) true stress-strain curves of cured ICA

    图  导电胶互连封装结构自由跌落模型

    Figure  3.  Free drop model of ICA packaging structure

    图  同一角度两种跌落方式示意图

    Figure  4.  Schematic diagrams of two drop modes at the same angle

    图  各向同性固化导电胶的本构参数拟合结果

    Figure  5.  Constitutive parameters fitting curve of cured ICA

    图  PCB板的z向位移云图

    Figure  6.  z-axis displacement contour of PCB board

    图  不同跌落角度下的最大等效应力(a)和最大等效塑性应变(b)

    Figure  7.  The maximum Mises stress (a) and maximum PEEQ (b) at different drop angles

    图  不同跌落高度下的最大等效应力(a)和最大等效塑性应变(b)

    Figure  8.  The maximum Mises stress (a) and maximum PEEQ (b) at different drop heights

    表  1  不同应变率下固化导电胶的动态屈服强度

    Table  1.   Dynamic yield strength of cured ICA at different strain rates

    Test No.Strain rate/s−1Yield strength/MPa
    11100184.6
    22100215.8
    33200238.0
    下载: 导出CSV

    表  2  基板和PCB板的横观各向同性参数

    Table  2.   Transversely isotropic parameters of substrate and PCB board

    ComponentEx,Ey/GPaEz/GPaGxzGyz/GPaGxy/GPa$\gamma$xz,$\gamma$yz$\gamma$xy$\,\rho $/(kg·m−3)
    Substrate16.87.47.593.310.390.111910
    PCB17.77.87.993.490.390.111910
    下载: 导出CSV

    表  3  各材料的力学参数

    Table  3.   Mechanical parameters of materials

    MaterialE/GPa$\gamma$$\,\rho $/(kg·m−3)
    Bolt2060.287800
    Chip1310.232330
    Cu1170.388960
    Resin280.351890
    Base2000.277800
    Impact platform200.202400
    下载: 导出CSV

    表  4  ICA的力学参数

    Table  4.   Mechanical parameters of cured ICA

    MaterialE/GPa$\gamma$$\,\rho $/(kg·m−3)C/s−1P
    ICA1.630.4405036411.3
    下载: 导出CSV

    表  5  不同跌落工况下的$\textit{z}$向最大应力

    Table  5.   Maximum $\textit{z}$-axis stress under different drop conditions

    Height/m$\sigma $0/MPa$\sigma $1/MPa$\sigma $2/MPa Height/mDrop angle/(°)$\sigma $11/MPa$\sigma $12/MPa
    1.0150.1148.2−290.9 1.010−193.6−145.3
    1.2158.3−175.2−263.1 1.015−155.9−181.4
    1.5173.1188.7−270.0 1.02092.5−232.8
    1.8185.9−194.4−320.3 1.02597.6−146.0
    2.0193.5196.2−323.91.0 30101.2−132.4
    下载: 导出CSV
  • [1] TUNTHAWIROON P, KANLAYASIRI K. Effects of Ag contents in Sn-xAg lead-free solders on microstructure, corrosion behavior and interfacial reaction with Cu substrate [J]. Transactions of Nonferrous Metals Society of China, 2019, 29(8): 1696–1704. doi: 10.1016/S1003-6326(19)65076-4
    [2] ZHANG S Y, QI X Q, YANG M, et al. A study on the resistivity and mechanical properties of modified nano-Ag coated Cu particles in electrically conductive adhesives [J]. Journal of Materials Science: Materials in Electronics, 2019, 30(10): 9171–9183. doi: 10.1007/s10854-019-01246-8
    [3] ZHANG L, SU Y, DAI Y Q, et al. Effect of the silver with different morphologies on the performance of electrically conductive adhesives [J]. Rare Metal Materials and Engineering, 2020, 49(5): 1526–1532.
    [4] 张小敏, 李起龙, 杜海涛, 等. 镀银铜粉导电胶制备及表征 [J]. 高校化学工程学报, 2020, 34(4): 1069–1075. doi: 10.3969/j.issn.1003-9015.2020.04.029

    ZHANG X M, LI Q L, DU H T, et al. Preparation and characterization of ultrafine silver-coated copper powder and electrical conductive adhesives [J]. Journal of Chemical Engineering of Chinese Universities, 2020, 34(4): 1069–1075. doi: 10.3969/j.issn.1003-9015.2020.04.029
    [5] ARADHANA R, MOHANTY S, NAYAK S K. A review on epoxy-based electrically conductive adhesives [J]. International Journal of Adhesion and Adhesives, 2020, 99: 102596. doi: 10.1016/j.ijadhadh.2020.102596
    [6] WU M L, LAN J S. Reliability and failure analysis of SAC 105 and SAC 1205N lead-free solder alloys during drop test events [J]. Microelectronics Reliability, 2018, 80: 213–222. doi: 10.1016/j.microrel.2017.12.013
    [7] WANG X Q, GAN W P, GE T T, et al. Effect of tetraethylenepentamine on silver conductive adhesive [J]. JOM, 2018, 70(9): 1800–1804. doi: 10.1007/s11837-018-2939-4
    [8] ZHAN H J, GUO J Y, YANG X Z, et al. Silver frameworks based on self-sintering silver micro-flakes and its application in low temperature curing conductive pastes [J]. Journal of Materials Science: Materials in Electronics, 2019, 30(24): 21343–21354. doi: 10.1007/s10854-019-02511-6
    [9] SU Y, ZHANG L, LIAO B, et al. Simultaneous improvement of the electrical conductivity and mechanical properties via double-bond introduction in the electrically conductive adhesives [J]. Journal of Materials Science: Materials in Electronics, 2020, 31(11): 8923–8932. doi: 10.1007/s10854-020-03427-2
    [10] SPRINGER M, BOSCO N. Linear viscoelastic characterization of electrically conductive adhesives used as interconnect in photovoltaic modules [J]. Progress in Photovoltaics: Research and Applications, 2020, 28(7): 659–681. doi: 10.1002/pip.3257
    [11] 杨雪霞, 肖革胜, 树学峰. 板级跌落冲击载荷下无铅焊点形状对BGA封装可靠性的影响 [J]. 振动与冲击, 2013, 32(1): 104–107. doi: 10.3969/j.issn.1000-3835.2013.01.022

    YANG X X, XIAO G S, SHU X F. Effects of solder joint shapes on reliability of BGA packages under board level drop impact loads [J]. Journal of Vibration and Shock, 2013, 32(1): 104–107. doi: 10.3969/j.issn.1000-3835.2013.01.022
    [12] TAN A T, TAN A W, YUSOF F. Influence of high-power-low-frequency ultrasonic vibration time on the microstructure and mechanical properties of lead-free solder joints [J]. Journal of Materials Processing Technology, 2016, 238: 8–14. doi: 10.1016/j.jmatprotec.2016.06.036
    [13] HE X, YAO Y. A dislocation density based viscoplastic constitutive model for lead free solder under drop impact [J]. International Journal of Solids and Structures, 2017, 120: 236–244. doi: 10.1016/j.ijsolstr.2017.05.005
    [14] LONG X, XU J M, WANG S B, et al. Understanding the impact response of lead-free solder at high strain rates [J]. International Journal of Mechanical Sciences, 2020, 172: 105416. doi: 10.1016/j.ijmecsci.2020.105416
    [15] 余同希, 邱信明. 冲击动力学 [M]. 北京: 清华大学出版社, 2011.
    [16] PARK R. State of the art report ductility evaluation from laboratory and analytical testing [C]//Proceedings of Ninth World Conference on Earthquake Engineering. Tokyo, 1988: 605−616.
    [17] JEDEL Solid State Technology Association. JESD22-B111 board level drop test method of components for handheld electronic products [S]. Arlington: JEDEL Solid State Technology Association, 2003.
    [18] 樊泽瑞. POP封装板级跌落可靠性研究 [D]. 广州: 华南理工大学, 2012.

    FAN Z R. Research on reliability of board level package-on-package in drop impact [D]. Guangzhou: South China University of Technology, 2012.
    [19] LAI Y S, YANG P C, YEH C L. Effects of different drop test conditions on board-level reliability of chip-scale packages [J]. Microelectronics Reliability, 2008, 48(2): 274–281. doi: 10.1016/j.microrel.2007.03.005
    [20] 吉新阔, 肖革胜, 刘二强, 等. 高温下不同银含量微电子胶连点的力学性能及膨胀系数不匹配热应力 [J]. 复合材料学报, 2017, 34(11): 2455–2462. doi: 10.13801/j.cnki.fhclxb.20170308.002

    JI X K, XIAO G S, LIU E Q, et al. High-temperature mechanical properties and thermal mismatch stress of conductive adhesive with different silver contents in flip chip packaging [J]. Acta Materiae Compositae Sinica, 2017, 34(11): 2455–2462. doi: 10.13801/j.cnki.fhclxb.20170308.002
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  1442
  • HTML全文浏览量:  386
  • PDF下载量:  25
出版历程
  • 收稿日期:  2021-11-15
  • 修回日期:  2021-12-07
  • 录用日期:  2022-01-18
  • 刊出日期:  2022-05-30

目录

    /

    返回文章
    返回