典型结构参数对船体梁抗水下爆炸特性的影响

张弛 李海涛 梅志远 李杰兵 郑欣颖

张弛, 李海涛, 梅志远, 李杰兵, 郑欣颖. 典型结构参数对船体梁抗水下爆炸特性的影响[J]. 高压物理学报, 2022, 36(3): 035102. doi: 10.11858/gywlxb.20210881
引用本文: 张弛, 李海涛, 梅志远, 李杰兵, 郑欣颖. 典型结构参数对船体梁抗水下爆炸特性的影响[J]. 高压物理学报, 2022, 36(3): 035102. doi: 10.11858/gywlxb.20210881
ZHANG Chi, LI Haitao, MEI Zhiyuan, LI Jiebing, ZHENG Xinying. Effects of Typical Structural Parameters on Underwater Explosion Resistance of Girders[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 035102. doi: 10.11858/gywlxb.20210881
Citation: ZHANG Chi, LI Haitao, MEI Zhiyuan, LI Jiebing, ZHENG Xinying. Effects of Typical Structural Parameters on Underwater Explosion Resistance of Girders[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 035102. doi: 10.11858/gywlxb.20210881

典型结构参数对船体梁抗水下爆炸特性的影响

doi: 10.11858/gywlxb.20210881
基金项目: 国家自然科学基金(51679244)
详细信息
    作者简介:

    张 弛(1997-),男,硕士研究生,主要从事舰船抗爆抗冲击研究.E-mail:zc_nue@163.com

    通讯作者:

    梅志远(1973-),男,博士,教授,主要从事舰船结构强度与振动研究.E-mail:zhiyuan_mei@163.com

  • 中图分类号: O383.3; U661.4

Effects of Typical Structural Parameters on Underwater Explosion Resistance of Girders

  • 摘要: 为了提升舰船抗水下爆炸冲击防护设计水平,首先需要揭示舰船典型结构参数变化对其损伤特性的影响规律。以某型舰船为参考,保留主要结构特征参数,设计了接近真实尺度的梯形横截面船体梁。利用Geers-Hunter理论公式得到各计算工况下的水下爆炸载荷,基于ABAQUS有限元数值模拟方法,对比分析了船体梁长度、外板板厚、型深、型宽等参数变化对船体梁抗水下爆炸冲击的结构响应特性的影响。提出了一种可以表征各典型结构参数对船体梁整体结构强度影响规律的无因次结构强度因子。结果表明:气泡脉动频率与结构固有频率耦合将导致中垂变形;船体梁长度增加使得结构抗弯能力减弱,在水下爆炸响应中的初始中拱变形缓慢增加,最大中垂变形显著增加;船体梁外板板厚、型深、型宽的增加会导致结构在响应期间的初始中拱变形和最大中垂变形减小;初始中拱变形受结构参数变化影响的敏感程度低于最大中垂变形。提出的无因次结构强度因子可以较好地表征船体梁结构整体强度。

     

  • 图  梯形截面船体梁基本模型截面尺寸

    Figure  1.  Trapezoidal cross section dimension of girder

    图  水域与船体梁有限元模型

    Figure  2.  Finite element model of water and girder

    图  Geers-Hunter理论公式计算得到的载荷曲线

    Figure  3.  Pressure-time curve determined by Geers-Hunter theoretical formula

    图  具有不同长度的船体梁的整体响应模式

    Figure  4.  Overall damage modes of girders with different lengths

    图  具有不同外板板厚的船体梁的整体损伤模式

    Figure  5.  Overall damage modes of girders with different thicknesses

    图  具有不同型深的船体梁的整体损伤模式

    Figure  6.  Overall damage modes of girders with different depths

    图  具有不同型宽的船体梁的整体损伤模式

    Figure  7.  Overall damage modes of girders with different widths

    图  各工况下的频率耦合比及变形值

    Figure  8.  Coupling frequency ratios and deformations of calculation cases

    图  船体梁变形随长度的变化曲线

    Figure  9.  Variation of girder deformation with length

    图  12  船体梁变形随型宽的变化

    Figure  12.  Variation of girder deformation with width

    图  10  船体梁变形随板厚的变化

    Figure  10.  Variation of girder deformation with thickness

    图  11  船体梁变形随型深的变化

    Figure  11.  Variation of girder deformation with depth

    图  13  梯形截面(a)和其等尺度的矩形截面(b)

    Figure  13.  Trapezoidal cross-section (a) and rectangle cross-section (b) with equal size

    图  14  结构强度因子与变形量和变形比的关系

    Figure  14.  Relation between S and deformation, and relation between S and deformation ratio

    表  1  具有不同长度的船体梁的响应情况

    Table  1.   Overall damage modes of girders with different lengths

    CaseL/mFs/Hz$\zeta $$ {x}{_{\text{hog}}} $/m$ {x}{_{\text{sag}}} $/mDamage mode
    A-11201.591.870.842.49Hogging
    A-21401.191.401.026.29Sagging
    A-31600.921.081.126.21Sagging
    A-41800.730.861.186.19Sagging
    下载: 导出CSV

    表  2  不同外板板厚船体梁的响应情况

    Table  2.   Overall damage modes of girders with different thicknesses

    Case$\delta $/mmFs/Hz$\zeta $$ {x}{_{\text{hog}}} $/m$ {x}{_{\text{sa}\text{g}}} $/mDamage mode
    B-1160.840.991.256.81Sagging
    B-2180.881.041.186.73Sagging
    B-3200.921.081.126.21Sagging
    B-4220.951.121.065.82Sagging
    B-5240.981.151.015.46Sagging
    下载: 导出CSV

    表  3  不同型深船体梁的响应情况

    Table  3.   Overall damage modes of girders with different depths

    CaseD/mFs/Hz$\zeta $$ {x}{_{\text{hog}}} $/m$ {x}{_{\text{sag}}} $/mDamage mode
    C-1 80.750.911.478.54Sagging
    C-2 90.831.001.268.34Sagging
    C-3100.921.081.126.21Sagging
    C-4111.001.161.006.19Sagging
    C-5121.081.220.885.43Sagging
    下载: 导出CSV

    表  4  具有不同型宽的船体梁的响应情况

    Table  4.   Overall damage modes of girders with different widths

    CaseB/mFs/Hz$\zeta $${x}{_{\text{ho}\text{g} }}$/m${x}{_{\text{sag} } }$/mDamage mode
    D-1130.941.111.217.12Sagging
    D-2140.921.081.126.21Sagging
    D-3150.881.031.075.44Sagging
    D-4160.840.940.965.39Sagging
    下载: 导出CSV

    表  5  各工况下的频率耦合比及变形

    Table  5.   Coupling frequency ratios and deformations of calculation cases

    $\zeta $${x}{_{\text{hog} } }$/m${x}{_{\text{sa}\text{g} } }$/mRemark $\zeta $${x}{_{\text{hog} } }$/m${x}{_{\text{sa}\text{g} } }$/mRemark
    0.861.186.19 1.111.217.12
    0.911.478.541.121.065.82
    0.940.965.391.151.015.46
    0.991.256.811.161.006.19
    1.001.268.341.220.885.43
    1.031.075.441.401.026.29
    1.041.186.731.870.842.49Hogging damage
    1.081.126.21Basic model
    下载: 导出CSV
  • [1] 刘丽滨, 李海涛, 刁爱民, 等. 水下爆炸下有限尺度平板的载荷特性及结构响应试验研究 [J]. 高压物理学报, 2018, 32(5): 055101.

    LIU L B, LI H T, DIAO A M, et al. Experimental investigation on load characteristics and structure response of finite-size plate subjected to underwater explosion [J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 055101.
    [2] 刘文思, 吴林杰, 侯代文, 等. 鱼雷近场爆炸对舰船不同结构的局部毁伤研究 [J]. 兵器装备工程学报, 2019, 40(10): 12–15. doi: 10.11809/bqzbgcxb2019.10.003

    LIU W S, WU L J, HOU D W, et al. Study on local damage of different structures of ships by torpedo near field explosion [J]. Journal of Ordnance Equipment Engineering, 2019, 40(10): 12–15. doi: 10.11809/bqzbgcxb2019.10.003
    [3] 贺铭, 张阿漫, 刘云龙. 近场水下爆炸气泡与双层破口结构的相互作用 [J]. 爆炸与冲击, 2020, 40(11): 111402.

    HE M, ZHANG A M, LIU Y L. Interaction of the underwater explosion bubbles and nearby double-layer structures with circular holes [J]. Explosion and Shock Waves, 2020, 40(11): 111402.
    [4] 李海涛, 张振华, 牟金磊, 等. 水下爆炸作用下弹塑性船体梁整体运动模型及损伤特性 [J]. 工程力学, 2019, 36(1): 238–247. doi: 10.6052/j.issn.1000-4750.2017.10.0779

    LI H T, ZHANG Z H, MU J L, et al. Hydro-elastic-plastic dynamic response of a ship hull girder subjected to underwater explosion: a simplified theoretical model [J]. Engineering Mechanics, 2019, 36(1): 238–247. doi: 10.6052/j.issn.1000-4750.2017.10.0779
    [5] HE Z H, CHEN Z H, JIANG Y B, et al. Effect of the standoff distance on hull structure damage subjected to near-field underwater explosion [J]. Marine Structure, 2020, 74: 102839.
    [6] 刘文思, 陆越, 周庆飞, 等. 鱼雷近场爆炸复杂载荷对舰船毁伤模式 [J]. 兵工学报, 2021, 42(4): 842–890. doi: 10.3969/j.issn.1000-1093.2021.04.018

    LIU W S, LU Y, ZHOU Q F, et al. Complex load of torpedo near-field explosion and its damage mode to ships [J]. Acta Armamentarii, 2021, 42(4): 842–890. doi: 10.3969/j.issn.1000-1093.2021.04.018
    [7] 张效慈. 水下爆炸试验模型律的若干问题 [J]. 船舶力学, 2009, 13(5): 783–787. doi: 10.3969/j.issn.1007-7294.2009.05.016

    ZHANG X C. Some problems for model law of underwater explosion tests [J]. Journal of Ship Mechanics, 2009, 13(5): 783–787. doi: 10.3969/j.issn.1007-7294.2009.05.016
    [8] 张振华, 汪玉, 张立军, 等. 船体梁在水下近距爆炸作用下反直观动力行为的相似分析 [J]. 应用数学和力学, 2011, 32(12): 1391–1404. doi: 10.3879/j.issn.1000-0887.2011.12.001

    ZHANG Z H, WANG Y, ZHANG L J, et al. Similarity research of anomalous dynamic response of ship girder subjected to near field underwater explosion [J]. Applied Mathematics and Mechanics, 2011, 32(12): 1391–1404. doi: 10.3879/j.issn.1000-0887.2011.12.001
    [9] WANG H, ZHU X, CHENG Y S, et al. Experimental and numerical investigation of ship structure subjected to close-in underwater shock wave and following gas bubble pulse [J]. Marine Structures, 2014, 39: 90–117. doi: 10.1016/j.marstruc.2014.07.003
    [10] 曾令玉, 蔡尚, 王诗平. 水下爆炸气泡对舰船冲击环境的影响 [J]. 中国舰船研究, 2018, 13(3): 66–71.

    ZENG L Y, CAI S, WANG S P. Effects of underwater explosion bubble on shock environment of warship [J]. Chinese Journal of Ship Research, 2018, 13(3): 66–71.
    [11] 姚熊亮, 郭君, 曹宇, 等. 在水下爆炸冲击波作用下的新型冲击因子 [J]. 中国造船, 2008, 49(2): 52–60. doi: 10.3969/j.issn.1000-4882.2008.02.007

    YAO X L, GUO J, CAO Y, et al. A new impulsive factors on the underwater shock load [J]. Shipbuilding of China, 2008, 49(2): 52–60. doi: 10.3969/j.issn.1000-4882.2008.02.007
    [12] 郭建军, 赵玉麟, 张皓, 等. 舰船水下爆炸冲击动弯矩工程化预报 [J]. 舰船科学技术, 2019, 41(1): 20–25. doi: 10.3404/j.issn.1672-7649.2019.01.004

    GUO J J, ZHAO Y L, ZHANG H, et al. Engineering forecast method of shock vibration bending moment of ships subjected to explosion load [J]. Ship Science and Technology, 2019, 41(1): 20–25. doi: 10.3404/j.issn.1672-7649.2019.01.004
    [13] HUNTER K S. Global-shape-function models of an underwater explosion bubble [D]. Colorado: University of Colorado, 2001.
    [14] GEERS T L, HUNTER K S. An integrated wave-effects model for an underwater explosion bubble [J]. The Journal of the Acoustical Society of America, 2002, 111(4): 1584–1601.
    [15] 李营, 汪玉, 吴卫国, 等. 船用907A钢的动态力学性能和本构关系 [J]. 哈尔滨工程大学学报, 2015, 36(1): 127–129.

    LI Y, WANG Y, WU W G, et al. Dynamic mechanical behavior and constitutive relation of the ship-built steel 907A [J]. Journal of Harbin Engineering University, 2015, 36(1): 127–129.
    [16] 朱锡, 牟金磊, 洪江波, 等. 水下爆炸气泡脉动特性的试验研究 [J]. 哈尔滨工程大学学报, 2007, 28(4): 365–368. doi: 10.3969/j.issn.1006-7043.2007.04.001

    ZHU X, MU J L, HONG J B, et al. Experimental study of characters of bubble impulsion induced by underwater explosions [J]. Journal of Harbin Engineering University, 2007, 28(4): 365–368. doi: 10.3969/j.issn.1006-7043.2007.04.001
  • 加载中
图(14) / 表(5)
计量
  • 文章访问数:  1047
  • HTML全文浏览量:  448
  • PDF下载量:  31
出版历程
  • 收稿日期:  2021-09-27
  • 修回日期:  2021-10-29
  • 录用日期:  2021-12-20
  • 刊出日期:  2022-05-30

目录

    /

    返回文章
    返回