仿马尾草薄壁结构的设计与耐撞性研究

邓敏杰 刘志芳

邓敏杰, 刘志芳. 仿马尾草薄壁结构的设计与耐撞性研究[J]. 高压物理学报, 2022, 36(3): 034202. doi: 10.11858/gywlxb.20210880
引用本文: 邓敏杰, 刘志芳. 仿马尾草薄壁结构的设计与耐撞性研究[J]. 高压物理学报, 2022, 36(3): 034202. doi: 10.11858/gywlxb.20210880
DENG Minjie, LIU Zhifang. Design and Crashworthiness Study Based on Horsetail Bionic Thin-Walled Structure[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 034202. doi: 10.11858/gywlxb.20210880
Citation: DENG Minjie, LIU Zhifang. Design and Crashworthiness Study Based on Horsetail Bionic Thin-Walled Structure[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 034202. doi: 10.11858/gywlxb.20210880

仿马尾草薄壁结构的设计与耐撞性研究

doi: 10.11858/gywlxb.20210880
基金项目: 国家自然科学基金(11772216)
详细信息
    作者简介:

    邓敏杰(1994-),男,硕士研究生,主要从事结构的冲击动力学研究. E-mail:2846297293@qq.com

    通讯作者:

    刘志芳(1971-),女,博士,副教授,主要从事弹塑性力学研究. E-mail:liuzhifang@tyut.edu.cn

  • 中图分类号: O341

Design and Crashworthiness Study Based on Horsetail Bionic Thin-Walled Structure

  • 摘要: 基于马尾草茎秆的结构特征,设计了一种新型马尾草仿生薄壁管。利用有限元软件ABAQUS,分析了双圆管和马尾草仿生薄壁管在轴向压缩下的耐撞性能和能量吸收特性。结果表明:在质量相同的情况下,仿生薄壁管的比吸能提高了34.74%,压缩力效率提高了37.50%,马尾草仿生薄壁管的比吸能随壁厚的增加而单调递增;对于肋数不同、质量相同的仿生薄壁管,肋数为4的结构耐撞性最好;在肋厚不变(比吸能损失较小)的前提下,调节肋角可以降低薄壁结构的初始峰值力。为了进一步提高薄壁管的能量吸收能力,以内半径、肋角和肋厚为设计变量,进行了多目标优化。采用响应面法和遗传算法(NSGA-Ⅱ),使比吸能最大化的同时初始峰值载荷最小化。与最初设计的仿生薄壁管相比,优化后薄壁管的比吸能提高了13.42%。

     

  • 图  马尾仿生薄壁结构的设计:(a)马尾草,(b)横截面,(c)倾斜肋骨,(d)传统双圆管,(e)仿生结构

    Figure  1.  Design of horsetail bionic thin-walled structure: (a) horsetail, (b) cross-section, (c) inclined ribs, (d) double round tube, (e) bionic structure

    图  马尾草仿生薄壁结构的有限元模型

    Figure  2.  Finite element model of horsetail bionic thin-walled structure

    图  网格敏感性分析

    Figure  3.  Mesh sensitivity analysis

    图  实验[19]与有限元模拟结果对比:(a)力-位移曲线,(b)变形模式

    Figure  4.  Comparison of experimental[19] and finite element simulation results: (a) force-displacement curves, (b) deformation model

    图  薄壁结构的力-位移曲线比较

    Figure  5.  Comparison of force-displacement curves of the thin-walled structures

    图  薄壁结构的变形模式

    Figure  6.  Deformation modes of thin-walled structures

    图  内半径和壁厚对耐撞性的影响

    Figure  7.  Effect of inner radius and wall thickness on crashworthiness

    图  不同内半径和壁厚的薄壁结构变形模式

    Figure  8.  Deformation modes of thin-walled structures with different internal radii and wall thicknesses

    图  不同肋数的薄壁结构的耐撞性比较

    Figure  9.  Comparison of crashworthiness of thin-walled structures with different ribs

    图  10  肋角和肋厚对耐撞性的影响

    Figure  10.  Effect of degree of ribs and thickness of ribs on crashworthiness

    图  11  优化方法流程图

    Figure  11.  Flowchart of the optimization method

    图  12  薄壁结构的 Pareto 前沿

    Figure  12.  Pareto fronts of the thin-walled structures

    图  13  Opt2 的力-位移曲线和变形模式

    Figure  13.  Force-displacement curve and deformation mode of Opt2

    表  1  铝6063T5的材料参数

    Table  1.   Material parameters of Al 6063T5

    $\,\rho$/(g·cm−3)${\sigma }$Y/MPa$ {\sigma }_{\mathrm{u}} $/MPaE/GPaμ
    2.70179.67241.8368.500.33
    下载: 导出CSV

    表  2  薄壁结构的耐撞性比较

    Table  2.   Comparison of crashworthiness of thin-walled structures

    Structuret/mmm/gPCF/kNEA/JSEA/(J·g−1)MCF/kNCFE
    Tube-11.1395.8468.552066.3521.5627.550.40
    Tube-21.0095.8467.412784.6729.0537.130.55
    下载: 导出CSV

    表  3  优化结果与有限元模拟结果比较

    Table  3.   Comparison of the optimal results and finite element simulation

    Test
    point
    $ \theta $/(°)r/mmtL/mmPCF SEA
    FEM/kNRSM/kNError/%FEM/(J·g−1)RSM/(J·g−1)Error/%
    Opt184.3512.251.2071.8972.811.28 30.4731.493.35
    Opt210.1014.681.2078.4978.600.1432.9532.29−2.00
    下载: 导出CSV
  • [1] XIE S C, JING K K, ZHOU H, et al. Mechanical properties of Nomex honeycomb sandwich panels under dynamic impact [J]. Composite Structures, 2020, 235: 111814. doi: 10.1016/j.compstruct.2019.111814
    [2] XU X, ZHANG Y, CHEN X B, et al. Crushing behaviors of hierarchical sandwich-walled columns [J]. International Journal of Mechanical Sciences, 2019, 161/162: 105021. doi: 10.1016/j.ijmecsci.2019.105021
    [3] ZAHRAN M S, XUE P, ESA M S, et al. A novel tailor-made technique for enhancing the crashworthiness by multi-stage tubular square tubes [J]. Thin-Walled Structures, 2018, 122: 64–82. doi: 10.1016/j.tws.2017.09.031
    [4] XU X, ZHANG Y, WANG J, et al. Crashworthiness design of novel hierarchical hexagonal columns [J]. Composite Structures, 2018, 194: 36–48. doi: 10.1016/j.compstruct.2018.03.099
    [5] PIRMOHAMMAD S, ESMAEILI-MARZDASHTI S. Multi-objective crashworthiness optimization of square and octagonal bitubal structures including different hole shapes [J]. Thin-Walled Structures, 2019, 139: 126–138. doi: 10.1016/j.tws.2019.03.004
    [6] 谭丽辉, 徐涛, 崔晓梅, 等. 带有圆弧形凹槽金属薄壁圆管抗撞性优化设计 [J]. 爆炸与冲击, 2014, 34(5): 547–553. doi: 10.11883/1001-1455(2014)05-0547-07

    TAN L H, XU T, CUI X M, et al. Design optimization for crashworthiness of metal thin-walled cylinders with circular arc indentations [J]. Explosion and Shock Waves, 2014, 34(5): 547–553. doi: 10.11883/1001-1455(2014)05-0547-07
    [7] ROSSI A, FAWAZ Z, BEHDINAN K. Numerical simulation of the axial collapse of thin-walled polygonal section tubes [J]. Thin-Walled Structures, 2005, 43(10): 1646–1661. doi: 10.1016/j.tws.2005.03.001
    [8] YAMASHITA M, GOTOH M, SAWAIRI Y. Axial crush of hollow cylindrical structures with various polygonal cross-sections: numerical simulation and experiment [J]. Journal of Materials Processing Technology, 2003, 140(1/2/3): 59–64. doi: 10.1016/S0924-0136(03)00821-5
    [9] ÁDÁNY S, VISY D. Global buckling of thin-walled simply supported columns: numerical studies [J]. Thin-Walled Structures, 2012, 54: 82–93. doi: 10.1016/j.tws.2012.02.001
    [10] TANG Z L, LIU S T, ZHANG Z H. Energy absorption properties of non-convex multi-corner thin-walled columns [J]. Thin-Walled Structures, 2012, 51: 112–120. doi: 10.1016/j.tws.2011.10.005
    [11] 何强, 王勇辉, 史肖娜, 等. 引入Sierpinski层级特性的新型薄壁多胞管轴向冲击吸能特性 [J]. 爆炸与冲击, 2020, 40(12): 123101. doi: 10.11883.bzycj/2020-0055

    HE Q, WANG Y H, SHI X N, et al. Energy absorption of new thin-walled, multi-cellular, tubular structures with Sierpinski hierarchical characteristics under axial impact [J]. Explosion and Shock Waves, 2020, 40(12): 123101. doi: 10.11883.bzycj/2020-0055
    [12] KASHANI M H, ALAVIJEH H S, AKBARSHAHI H, et al. Bitubular square tubes with different arrangements under quasi-static axial compression loading [J]. Materials & Design, 2013, 51: 1095–1103. doi: 10.1016/j.matdes.2013.04.084
    [13] LIU W Y, LIN Z Q, WANG N L, et al. Dynamic performances of thin-walled tubes with star-shaped cross section under axial impact [J]. Thin-Walled Structures, 2016, 100: 25–37. doi: 10.1016/j.tws.2015.11.016
    [14] ZHANG X, ZHANG H. Energy absorption of multi-cell stub columns under axial compression [J]. Thin-Walled Structures, 2013, 68: 156–163. doi: 10.1016/j.tws.2013.03.014
    [15] SHARIFI S, SHAKERI M, FAKHARI H E, et al. Experimental investigation of bitubal circular energy absorbers under quasi-static axial load [J]. Thin-Walled Structures, 2015, 89: 42–53. doi: 10.1016/j.tws.2014.12.008
    [16] 杨欣, 范晓文, 许述财, 等. 仿虾螯结构薄壁管设计及耐撞性分析 [J]. 爆炸与冲击, 2020, 40(4): 043301. doi: 10.11883/bzycj-2019-0280

    YANG X, FAN X W, XU S C, et al. Design and crashworthiness analysis of thin-walled tubes based on a shrimp chela structure [J]. Explosion and Shock Waves, 2020, 40(4): 043301. doi: 10.11883/bzycj-2019-0280
    [17] HA N S, LU G X, XIANG X M. High energy absorption efficiency of thin-walled conical corrugation tubes mimicking coconut tree configuration [J]. International Journal of Mechanical Sciences, 2018, 148: 409–421. doi: 10.1016/j.ijmecsci.2018.08.041
    [18] LIU Q, XU X Y, MA J B, et al. Lateral crushing and bending responses of CFRP square tube filled with aluminum honeycomb [J]. Composites Part B: Engineering, 2017, 118: 104–115. doi: 10.1016/j.compositesb.2017.03.021
    [19] FU J, LIU Q, LIUFU K, et al. Design of bionic-bamboo thin-walled structures for energy absorption [J]. Thin-Walled Structures, 2019, 135: 400–413. doi: 10.1016/j.tws.2018.10.003
    [20] WIERZBICKI T, BHAT S U, ABRAMOWICZ W, et al. Alexander revisited: a two folding elements model of progressive crushing of tubes [J]. International Journal of Solids and Structures, 1992, 29(24): 3269–3288. doi: 10.1016/0020-7683(92)90040-Z
    [21] ZHANG X, ZHANG H. Axial crushing of circular multi-cell columns [J]. International Journal of Impact Engineering, 2014, 65: 110–125. doi: 10.1016/j.ijimpeng.2013.12.002
    [22] HANSSEN A G, LANGSETH M, HOPPERSTAD O S. Static and dynamic crushing of circular aluminium extrusions with aluminium foam filler [J]. International Journal of Impact Engineering, 2000, 24(5): 475–507. doi: 10.1016/S0734-743X(99)00170-0
    [23] SUN G Y, XU F X, LI G Y, et al. Crashing analysis and multiobjective optimization for thin-walled structures with functionally graded thickness [J]. International Journal of Impact Engineering, 2014, 64: 62–74. doi: 10.1016/j.ijimpeng.2013.10.004
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  997
  • HTML全文浏览量:  337
  • PDF下载量:  48
出版历程
  • 收稿日期:  2021-09-27
  • 修回日期:  2021-10-13
  • 刊出日期:  2022-05-30

目录

    /

    返回文章
    返回