改进型FCC晶格材料设计与吸能特性

郭璐 刘志芳 李世强 吴桂英

郭璐, 刘志芳, 李世强, 吴桂英. 改进型FCC晶格材料设计与吸能特性[J]. 高压物理学报, 2022, 36(1): 014206. doi: 10.11858/gywlxb.20210853
引用本文: 郭璐, 刘志芳, 李世强, 吴桂英. 改进型FCC晶格材料设计与吸能特性[J]. 高压物理学报, 2022, 36(1): 014206. doi: 10.11858/gywlxb.20210853
GUO Lu, LIU Zhifang, LI Shiqiang, WU Guiying. Design and Energy Absorption Characteristic of Improved FCC Lattice Materials[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 014206. doi: 10.11858/gywlxb.20210853
Citation: GUO Lu, LIU Zhifang, LI Shiqiang, WU Guiying. Design and Energy Absorption Characteristic of Improved FCC Lattice Materials[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 014206. doi: 10.11858/gywlxb.20210853

改进型FCC晶格材料设计与吸能特性

doi: 10.11858/gywlxb.20210853
基金项目: 国家自然科学基金(11772216,12072219)
详细信息
    作者简介:

    郭 璐(1992-),女,博士研究生,主要从事冲击动力学研究. E-mail:gllhhxx@126.com

    通讯作者:

    李世强(1986-),男,博士,副教授,主要从事冲击动力学研究. E-mail:lishiqiang@tyut.edu.cn

  • 中图分类号: O347

Design and Energy Absorption Characteristic of Improved FCC Lattice Materials

  • 摘要: 基于金属微观晶体结构,设计了一种改进型面心立方(FCC)晶格材料。利用 ABAQUS有限元软件,对体心立方(BCC)及FCC晶格材料进行了准静态与速度为10~100 m/s的动态加载数值模拟,定量分析了两种晶格材料的能量吸收性能,给出了动态加载下晶格材料压缩平台应力及塑性能量耗散的半经验公式。结果表明:在准静态压缩载荷下,相同相对密度的FCC晶格比BCC晶格具有更优异的能量吸收性能,当相对密度为10.5%~10.6%时,FCC晶格材料的归一化比吸能是BCC晶格材料的2.6倍。此外,与常见负泊松比材料及大部分桁架晶格材料相比,相同相对密度的FCC晶格材料具有更高的比刚度、能量吸收效率及压缩力效率。

     

  • 图  两种仿金属晶体结构的单元晶格

    Figure  1.  Unit cells of two lattices inspired by metal crystal structures

    图  有限元模型及模型尺寸

    Figure  2.  Finite element model and corresponding dimensions

    图  相对密度理论模型与CAD结果的比较

    Figure  3.  Comparison of the predictions of relative density between theoretical results and calculation with CAD models

    图  相对密度为10.5% 的BCC和FCC晶格材料的能量验证

    Figure  4.  Energy verification of BCC and FCC lattice materials in case of relative density 10.5%

    图  BCC和FCC晶格材料的准静态压缩变形模式

    Figure  5.  Quasi-static deformation modes for BCC and FCC lattice materials

    图  准静态压缩晶格材料的应力-应变响应

    Figure  6.  Stress-strain response curves of lattice materials under quasi-static compression

    图  v=75 m/s时晶格材料的变形模式

    Figure  7.  Deformation modes of lattice materials at v =75 m/s

    图  相同相对密度下不同晶格材料在1~100 m/s速度范围内的能量吸收特性对比

    Figure  8.  Comparison of energy absorption for different lattice with the same relative density at various velocities of 1–100 m/s

    图  不同冲击速度下晶格材料的应力-应变响应

    Figure  9.  Stress-strain curves of lattice materials subjected to impact at different velocities

    图  10  承载能力波动及压缩力效率与冲击速度的关系

    Figure  10.  Trends of undulation of load-carrying capacity and CFE versus the impact velocity

    图  11  密实化应变(a)、平台应力(b)以及塑性能量耗散(c)与冲击速度的关系

    Figure  11.  Trends of onset strain of densification (a), plateau stress (b), and plastic energy dissipation (c) versus the impact velocity

    图  12  BCC及FCC晶格材料与其他材料的归一化弹性模量-相对密度关系比较

    Figure  12.  Comparison of normalized Young’s modulus versus relative density for BCC and FCC lattice materials with other materials

    图  13  BCC及FCC晶格材料与其他材料的吸能效率(a)、压缩力效率(b)和归一化比吸能UM,n (c)比较

    Figure  13.  Comparison of energy absorption efficiency (a), compression force efficiency (b) and specific energy absorption UM,n (c) for BCC and FCC lattice materials with other materials

    表  1  SLM制备316L不锈钢材料参数[20]

    Table  1.   Material parameters of 316L stainless steel manufactured by SLM[20]

    $\;\rho $0/(kg·m−3)E/GPa$\;\mu $A/GPaB/GPaCmn
    79001800.30.4920.8120.01240.910.99
    下载: 导出CSV
  • [1] AL-KETAN O, ROWSHAN R, AL-RUB R K A. Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials [J]. Additive Manufacturing, 2018, 19: 167–183. doi: 10.1016/j.addma.2017.12.006
    [2] BRONKHORST C A, MAYEUR J R, LIVESCU V, et al. Structural representation of additively manufactured 316L austenitic stainless steel [J]. International Journal of Plasticity, 2019, 118: 70–86. doi: 10.1016/j.ijplas.2019.01.012
    [3] BAUER J, SCHROER A, SCHWAIGER R, et al. Approaching theoretical strength in glassy carbon nanolattices [J]. Nature Materials, 2016, 15(4): 438–443. doi: 10.1038/NMAT4561
    [4] BONATTI C, MOHR D. Large deformation response of additively-manufactured FCC metamaterials: from octet truss lattices towards continuous shell mesostructures [J]. International Journal of Plasticity, 2017, 92: 122–147. doi: 10.1016/j.ijplas.2017.02.003
    [5] MUELLER J, SHEA K. Stepwise graded struts for maximizing energy absorption in lattices [J]. Extreme Mechanics Letters, 2018, 25: 7–15. doi: 10.1016/j.eml.2018.10.006
    [6] ABOU-ALI A M, AL-KETAN O, ROWSHAN R, et al. Mechanical response of 3D printed bending-dominated ligament-based triply periodic cellular polymeric solids [J]. Journal of Materials Engineering and Performance, 2019, 28(4): 2316–2326. doi: 10.1007/s11665-019-03982-8
    [7] 赵雪, 闫雷雷, 卢天健, 等. 多层金属多孔复合结构面外压缩吸能特性实验 [J]. 空军工程大学学报(自然科学版), 2017, 18(4): 28–33. doi: 10.3969/j.issn.1009-3516.2017.04.006

    ZHAO X, YAN L L, LU T J, et al. An experimental investigation on energy absorption of multi-layer sandwich structures with metallic corrugated cores under out-of-plane compressive load [J]. Journal of Air Force Engineering University (Natural Science Edition), 2017, 18(4): 28–33. doi: 10.3969/j.issn.1009-3516.2017.04.006
    [8] 王中钢. 轻质蜂窝结构力学 [M]. 北京: 科学出版社, 2019: 1–320.

    WANG Z G. Mechanics of lightweight honeycomb structure [M]. Beijing: Science Press, 2019: 1–320.
    [9] 吴鹤翔, 刘颖. 梯度变化对密度梯度蜂窝材料力学性能的影响 [J]. 爆炸与冲击, 2013, 33(2): 163–168. doi: 10.11883/1001-1455(2013)02-0163-06

    WU H X, LIU Y. Influences of density gradient variation on mechanical performances of density-graded honeycomb materials [J]. Explosion and Shock Waves, 2013, 33(2): 163–168. doi: 10.11883/1001-1455(2013)02-0163-06
    [10] SURJADI J U, GAO L B, DU H F, et al. Mechanical metamaterials and their engineering applications [J]. Advanced Engineering Materials, 2019, 21(3): 1800864. doi: 10.1002/adem.201800864
    [11] HUANG C W, CHEN L. Negative Poisson’s ratio in modern functional materials [J]. Advanced Materials, 2016, 28(37): 8079–8096. doi: 10.1002/adma.201601363
    [12] JIN X C, WANG Z H, NING J G, et al. Dynamic response of sandwich structures with graded auxetic honeycomb cores under blast loading [J]. Composites Part B: Engineering, 2016, 106: 206–217. doi: 10.1016/j.compositesb.2016.09.037
    [13] WANG Z G. Recent advances in novel metallic honeycomb structure [J]. Composites Part B: Engineering, 2019, 166: 731–741. doi: 10.1016/j.compositesb.2019.02.011
    [14] GÜMRÜK R, MINES R A W. Compressive behaviour of stainless steel micro-lattice structures [J]. International Journal of Mechanical Sciences, 2013, 68: 125–139. doi: 10.1016/j.ijmecsci.2013.01.006
    [15] PHAM M S, LIU C, TODD I, et al. Damage-tolerant architected materials inspired by crystal microstructure [J]. Nature, 2019, 565(7739): 305–311. doi: 10.1038/s41586-018-0850-3
    [16] DESHPANDE V S, FLECK N A, ASHBY M F. Effective properties of the octet-truss lattice material [J]. Journal of the Mechanics and Physics of Solids, 2001, 49(8): 1747–1769. doi: 10.1016/S0022-5096(01)00010-2
    [17] DESHPANDE V S, ASHBY M F, FLECK N A. Foam topology: bending versus stretching dominated architectures [J]. Acta Materialia, 2001, 49(6): 1035–1040. doi: 10.1016/S1359-6454(00)00379-7
    [18] CHENG L, BAI J X, TO A C. Functionally graded lattice structure topology optimization for the design of additive manufactured components with stress constraints [J]. Computer Methods in Applied Mechanics and Engineering, 2019, 344: 334–359. doi: 10.1016/j.cma.2018.10.010
    [19] WANG Q S, LI Z H, ZHANG Y, et al. Ultra-low density architectured metamaterial with superior mechanical properties and energy absorption capability [J]. Composites Part B: Engineering, 2020, 202: 108379. doi: 10.1016/j.compositesb.2020.108379
    [20] LI X Y, ROTH C C, TANCOGNE-DEJEAN T, et al. Rate- and temperature-dependent plasticity of additively manufactured stainless steel 316L: characterization, modeling and application to crushing of shell-lattices [J]. International Journal of Impact Engineering, 2020, 145: 103671. doi: 10.1016/j.ijimpeng.2020.103671
    [21] USHIJIMA K, CANTWELL W J, MINES R A W, et al. An investigation into the compressive properties of stainless steel micro-lattice structures [J]. Journal of Sandwich Structures & Materials, 2011, 13(3): 303–329. doi: 10.1177/1099636210380997
    [22] 朱跃峰. 基于ABAQUS的显式动力学分析方法研究 [J]. 机械设计与制造, 2015(3): 107–109, 113. doi: 10.3969/j.issn.1001-3997.2015.03.029

    ZHU Y F. Research on analysis methods of explicit dynamics based on ABAQUS [J]. Machinery Design & Manufacture, 2015(3): 107–109, 113. doi: 10.3969/j.issn.1001-3997.2015.03.029
    [23] XIANG Y F, YU T X, YANG L M. Comparative analysis of energy absorption capacity of polygonal tubes, multi-cell tubes and honeycombs by utilizing key performance indicators [J]. Materials & Design, 2016, 89: 689–696. doi: 10.1016/j.matdes.2015.10.004
    [24] TAN P J, HARRIGAN J J, REID S R. Inertia effects in uniaxial dynamic compression of a closed cell aluminium alloy foam [J]. Materials Science and Technology, 2002, 18(5): 480–488. doi: 10.1179/026708302225002092
    [25] ZOU Z, REID S R, TAN P J, et al. Dynamic crushing of honeycombs and features of shock fronts [J]. International Journal of Impact Engineering, 2009, 36(1): 165–176. doi: 10.1016/j.ijimpeng.2007.11.008
    [26] YANG L, HARRYSSON O, WEST H, et al. Compressive properties of Ti-6Al-4V auxetic mesh structures made by electron beam melting [J]. Acta Materialia, 2012, 60(8): 3370–3379. doi: 10.1016/j.actamat.2012.03.015
    [27] KOLKEN H M A, JANBAZ S, LEEFLANG S M A, et al. Rationally designed meta-implants: a combination of auxetic and conventional meta-biomaterials [J]. Materials Horizons, 2018, 5(1): 28–35. doi: 10.1039/C7MH00699C
    [28] ELIPE J C Á, LANTADA A D. Comparative study of auxetic geometries by means of computer-aided design and engineering [J]. Smart Materials and Structures, 2012, 21(10): 105004. doi: 10.1088/0964-1726/21/10/105004
    [29] SCHWERDTFEGER J, WEIN F, LEUGERING G, et al. Design of auxetic structures via mathematical optimization [J]. Advanced Materials, 2011, 23(22/23): 2650–2654. doi: 10.1002/adma.201004090
    [30] YANG H, WANG B, MA L. Mechanical properties of 3D double-U auxetic structures [J]. International Journal of Solids and Structures, 2019, 180/181: 13–29. doi: 10.1016/j.ijsolstr.2019.07.007
    [31] HAN S C, KANG D S, KANG K. Two nature-mimicking auxetic materials with potential for high energy absorption [J]. Materials Today, 2019, 26: 30–39. doi: 10.1016/j.mattod.2018.11.004
    [32] BABAEE S, SHIM J, WEAVER J C, et al. 3D soft metamaterials with negative Poisson’s ratio [J]. Advanced Materials, 2013, 25(36): 5044–5049. doi: 10.1002/adma.201301986
    [33] FRIIS E A, LAKES R S, PARK J B. Negative Poisson’s ratio polymeric and metallic foams [J]. Journal of Materials Science, 1988, 23(12): 4406–4414. doi: 10.1007/BF00551939
    [34] SCHAEDLER T A, RO C J, SORENSEN A E, et al. Designing metallic microlattices for energy absorber applications [J]. Advanced Engineering Materials, 2014, 16(3): 276–283. doi: 10.1002/adem.201300206
    [35] KANAHASHI H, MUKAI T, NIEH T G, et al. Effect of cell size on the dynamic compressive properties of open-celled aluminum foams [J]. Materials Transactions, 2002, 43(10): 2548–2553. doi: 10.2320/matertrans.43.2548
    [36] DE SOUSA R A, GONÇALVES D, COELHO R, et al. Assessing the effectiveness of a natural cellular material used as safety padding material in motorcycle helmets [J]. Simulation, 2012, 88(5): 580–591. doi: 10.1177/0037549711414735
    [37] MOHSENIZADEH M, GASBARRI F, MUNTHER M, et al. Additively-manufactured lightweight Metamaterials for energy absorption [J]. Materials & Design, 2018, 139: 521–530. doi: 10.1016/j.matdes.2017.11.037
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  993
  • HTML全文浏览量:  578
  • PDF下载量:  67
出版历程
  • 收稿日期:  2021-07-22
  • 修回日期:  2021-08-13

目录

    /

    返回文章
    返回