Sn1−xGexTe的高温高压合成及热电性能

周绪彪 李尚升 李洪涛 宿太超 杨曼曼 杜景阳 胡美华 胡强

周绪彪, 李尚升, 李洪涛, 宿太超, 杨曼曼, 杜景阳, 胡美华, 胡强. Sn1−xGexTe的高温高压合成及热电性能[J]. 高压物理学报, 2022, 36(1): 011102. doi: 10.11858/gywlxb.20210805
引用本文: 周绪彪, 李尚升, 李洪涛, 宿太超, 杨曼曼, 杜景阳, 胡美华, 胡强. Sn1−xGexTe的高温高压合成及热电性能[J]. 高压物理学报, 2022, 36(1): 011102. doi: 10.11858/gywlxb.20210805
ZHOU Xubiao, LI Shangsheng, LI Hongtao, SU Taichao, YANG Manman, DU Jingyang, HU Meihua, HU Qiang. Synthesis and Thermoelectric Properties of Sn1−xGexTe by High Temperature and High Pressure[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 011102. doi: 10.11858/gywlxb.20210805
Citation: ZHOU Xubiao, LI Shangsheng, LI Hongtao, SU Taichao, YANG Manman, DU Jingyang, HU Meihua, HU Qiang. Synthesis and Thermoelectric Properties of Sn1−xGexTe by High Temperature and High Pressure[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 011102. doi: 10.11858/gywlxb.20210805

Sn1−xGexTe的高温高压合成及热电性能

doi: 10.11858/gywlxb.20210805
基金项目: 河南省高等学校青年骨干教师培养计划(2018GGJS057);中华人民共和国海关总署科研计划项目(2019HK014)
详细信息
    作者简介:

    周绪彪(1998-),男,硕士研究生,主要从事热电材料研究. E-mail:124423641@qq.com

    通讯作者:

    李尚升(1966-),男,博士,副教授,主要从事超硬及多功能材料研究. E-mail:lishsh@hpu.edu.cn

  • 中图分类号: O521.2

Synthesis and Thermoelectric Properties of Sn1−xGexTe by High Temperature and High Pressure

  • 摘要: 在众多热电材料中,SnTe具有与PbTe相同的晶体结构且不含重金属Pb,近年来引起了人们的广泛关注。目前,本征SnTe的热电性能并不特别优异,存在以下问题:大量本征Sn空位导致载流子浓度过高,从而降低了电输运性能;价带中的轻带与重带能量劈裂较大,且带隙过窄,不利于通过重带参与电运输提高Seebeck系数;晶格热导率较大。利用高温高压方法快速合成了Ge掺杂的SnTe合金,系统研究了不同Ge含量对SnTe的微观结构和热电性能的影响。结果表明:Ge掺杂能够有效地调控SnTe材料的电运输性能;Ge掺杂使样品的微观结构发生变化,样品晶粒细化,且析出纳米第二相,晶界和纳米相对声子的散射作用降低了热导率;样品Ge0.2Sn0.8Te在700 K时的热电优值达到0.35。

     

  • 图  高压合成GexSn1−xTe样品的XRD谱

    Figure  1.  XRD patterns of GexSn1−xTe synthesized under high pressure

    图  高压合成的GexSn1−xTe的SEM图像:(a) x = 0,(b) x = 0.1,(c) x = 0.2,(d) x = 0.3

    Figure  2.  SEM patterns of GexSn1−xTe synthesized under high pressure: (a) x = 0, (b) x = 0.1, (c) x = 0.2, (d) x = 0.3

    图  SnTe (a)和Ge1/3Sn2/3Te (b)的能带结构

    Figure  3.  Band structures of SnTe (a) and Ge1/3Sn2/3Te (b)

    图  GexSn1−xTe的热电性能:(a) Seebeck系数,(b) 电阻率,(c) 热导率,(d) 品质因子

    Figure  4.  Electrical properties of GexSn1−xTe: (a) Seebeck coefficient, (b) resistivity, (c) thermal conductivity, (d) quality factor

  • [1] SNYDER G J, TOBERER E S. Complex thermoelectric materials [J]. Nature Materials, 2008, 7(2): 105–114. doi: 10.1038/nmat2090
    [2] HAN C, LI Z, LU G Q, et al. Robust scalable synthesis of surfactant-free thermoelectric metal chalcogenide nanostructures [J]. Nano Energy, 2015, 15: 193–204. doi: 10.1016/j.nanoen.2015.04.024
    [3] ZHAO L D, ZHANG X, WU H J, et al. Enhanced thermoelectric properties in the counter-doped SnTe system with strained endotaxial SrTe [J]. Journal of the American Chemical Society, 2016, 138(7): 2366–2373. doi: 10.1021/jacs.5b13276
    [4] MASEK J, NUZHNYJ D N. Changes of electronic structure of SnTe due to high concentration of Sn vacancies [J]. Acta Physica Polonica, 1997, 92(5): 915–918. doi: 10.12693/APhysPolA.92.915
    [5] ZHOU M, GIBBS Z M, WANG H, et al. Optimization of thermoelectric efficiency in SnTe: the case for the light band [J]. Physical Chemistry Chemical Physics, 2014, 16(38): 20741–20748. doi: 10.1039/C4CP02091J
    [6] TAN G J, ZEIER W G, SHI F Y, et al. High thermoelectric performance SnTe-In2Te3 solid solutions enabled by resonant levels and strong vacancy phonon scattering [J]. Chemistry of Materials, 2015, 27(22): 7801–7811. doi: 10.1021/acs.chemmater.5b03708
    [7] LI W, WU Y, LIN S, et al. Advances in environment-friendly SnTe thermoelectrics [J]. ACS Energy Letters, 2017, 2(10): 2349–2355. doi: 10.1021/acsenergylett.7b00658
    [8] PEI Y L, LIU Y. Electrical and thermal transport properties of Pb-based chalcogenides: PbTe, PbSe, and PbS [J]. Journal of Alloys & Compounds, 2012, 514: 40–44.
    [9] BANIK A, BISWAS K. AgI alloying in SnTe boosts the thermoelectric performance via simultaneous valence band convergence and carrier concentration optimization [J]. Journal of Solid State Chemistry, 2016, 242: 43–49. doi: 10.1016/j.jssc.2016.02.012
    [10] TAN G J, ZHAO L D, SHI F Y, et al. High thermoelectric performance of p-type SnTe via a synergistic band engineering and nanostructuring approach. [J]. Journal of the American Chemical Society, 2014, 136(19): 7006–7017. doi: 10.1021/ja500860m
    [11] TAN X J, SHAO H Z, HE J, et al. Band engineering and improved thermoelectric performance in M-doped SnTe (M = Mg, Mn, Cd, and Hg) [J]. Physical Chemistry Chemical Physics, 2016, 18(10): 7141–7147. doi: 10.1039/C5CP07620J
    [12] ORABI R A R A, HWANG J, LIN C C, et al. Ultralow lattice thermal conductivity and enhanced thermoelectric performance in SnTe: Ga materials [J]. Chemistry of Materials, 2017, 29(2): 612–620.
    [13] BANIK A, SHENOY U S, ANAND S, et al. Mg alloying in SnTe facilitates valence band convergence and optimizes thermoelectric properties [J]. Chemistry of Materials, 2015, 27(2): 581–587. doi: 10.1021/cm504112m
    [14] ZHAO L D, WU H J, HAO S Q, et al. All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance [J]. Energy and Environmental Science, 2013, 6(11): 3346–3355. doi: 10.1039/c3ee42187b
    [15] KORRINGA J, GERRITSEN A N. The cooperative electron phenomenon in dilute alloys [J]. Physica, 1953, 19(1): 457–507. doi: 10.1016/S0031-8914(53)80053-4
    [16] KULBACHINSKII V, BRANDT N, CHEREMNYKH P, et al. Magnetoresistance and hall effect in Bi2Te3(Sn) in ultrahigh magnetic fields and under pressure [J]. Physica Status Solidi (B), 2010, 150(1): 237–243.
    [17] ZHANG Q, CAO F, LIU W S, et al. Heavy doping and band engineering by potassium to improve the thermoelectric figure of merit in p-type PbTe, PbSe, and PbTe1- ySey [J]. Journal of the American Chemical Society, 2012, 134(24): 10031–10038. doi: 10.1021/ja301245b
    [18] ZHANG Q, LIAO B L, LAN Y C, et al. High thermoelectric performance by resonant dopant indium in nanostructured SnTe [J]. Proceedings of the National Academy of Sciences, 2013, 110(33): 13261–13266. doi: 10.1073/pnas.1305735110
    [19] WU H J, CHANG C, FENG D, et al. Synergistically optimized electrical and thermal transport properties of SnTe via alloying high-solubility MnTe [J]. Energy & Environmental Science, 2015, 8(11): 3298–3312.
    [20] PEI Y Z, ZHENG L L, LI W, et al. Interstitial point defect scattering contributing to high thermoelectric performance in SnTe [J]. Advanced Electronic Materials, 2016, 2(6): 1600019. doi: 10.1002/aelm.201600019
    [21] VINEIS C J, SHAKOURI A, MAJUMDAR A, et al. Nanostructured thermoelectrics: big efficiency gains from small features [J]. Advanced Materials, 2010, 22(36): 3970–3980. doi: 10.1002/adma.201000839
    [22] TAN G J, SHI F Y, HAO S Q, et al. Codoping in SnTe: enhancement of thermoelectric performance through synergy of resonance levels and band convergence [J]. Journal of the American Chemical Society, 2015, 137(15): 5100–5112. doi: 10.1021/jacs.5b00837
    [23] KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54(16): 11169–11186. doi: 10.1103/PhysRevB.54.11169
    [24] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1998, 77(18): 3865–3868.
    [25] PAYNE M C, TETER M P, ALLAN D C, et al. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients [J]. Reviews of Modern Physics, 1992, 64(4): 1045–1097. doi: 10.1103/RevModPhys.64.1045
    [26] TAN G J, SHI F Y, HAO S Q, et al. Valence band modification and high thermoelectric performance in SnTe heavily alloyed with MnTe [J]. Journal of the American Chemical Society, 2015, 137(15): 11507–11516.
    [27] HE J, TAN X J, XU J T, et al. Valence band engineering and thermoelectric performance optimization in SnTe by Mn-alloying via a zone-melting method [J]. Journal of Materials Chemistry A, 2015, 3(39): 19974–19979. doi: 10.1039/C5TA05535K
    [28] FU T Z, XIN J Z, ZHU T J, et al. Approaching the minimum lattice thermal conductivity of p-type SnTe thermoelectric materials by Sb and Mg alloying [J]. Science Bulletin, 2019, 64(14): 1024–1030.
    [29] NSHIMYIMANA E, SU X L, XIE H Y, et al. Realization of non-equilibrium process for high thermoelectric performance Sb-doped GeTe [J]. Science Bulletin, 2018, 63(11): 717–725. doi: 10.1016/j.scib.2018.04.012
  • 加载中
图(4)
计量
  • 文章访问数:  1149
  • HTML全文浏览量:  619
  • PDF下载量:  44
出版历程
  • 收稿日期:  2021-05-30
  • 修回日期:  2021-06-15

目录

    /

    返回文章
    返回