初始条件对氢氧爆轰气体炮内弹道性能的影响规律

胡天翔 张庆明 薛一江 龙仁荣 任思远

胡天翔, 张庆明, 薛一江, 龙仁荣, 任思远. 初始条件对氢氧爆轰气体炮内弹道性能的影响规律[J]. 高压物理学报, 2021, 35(6): 063301. doi: 10.11858/gywlxb.20210779
引用本文: 胡天翔, 张庆明, 薛一江, 龙仁荣, 任思远. 初始条件对氢氧爆轰气体炮内弹道性能的影响规律[J]. 高压物理学报, 2021, 35(6): 063301. doi: 10.11858/gywlxb.20210779
HU Tianxiang, ZHANG Qingming, XUE Yijiang, LONG Renrong, REN Siyuan. Influence of Initial Conditions on the Interior Ballistic Performance of Hydrogen-Oxygen Detonation Gas Gun[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 063301. doi: 10.11858/gywlxb.20210779
Citation: HU Tianxiang, ZHANG Qingming, XUE Yijiang, LONG Renrong, REN Siyuan. Influence of Initial Conditions on the Interior Ballistic Performance of Hydrogen-Oxygen Detonation Gas Gun[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 063301. doi: 10.11858/gywlxb.20210779

初始条件对氢氧爆轰气体炮内弹道性能的影响规律

doi: 10.11858/gywlxb.20210779
基金项目: 国家国防科技工业局民用航天技术预研项目(D020304)
详细信息
    作者简介:

    胡天翔(1995-),男,硕士研究生,主要从事材料与结构冲击动力学研究. E-mail:bit_htx@163.com

    通讯作者:

    张庆明(1963-),男,教授,博士生导师,主要从事材料与结构冲击动力学研究.E-mail:qmzhang@bit.edu.cn

  • 中图分类号: O521.3; TJ012.1

Influence of Initial Conditions on the Interior Ballistic Performance of Hydrogen-Oxygen Detonation Gas Gun

  • 摘要: 为分析不同初始条件对氢氧爆轰气体炮内弹道性能的影响,基于计算流体力学方法,利用FLUENT软件建立了氢氧爆轰气体炮二维数值计算模型,同时基于40 mm口径气体炮开展发射实验,对计算模型的有效性进行了验证。通过数值模拟,得到了初始压力、氮气含量和反应气体配比对氢氧爆轰气体炮内弹道性能的影响规律。结果表明:提升气室初始压力和氮气含量均可以有效地提高弹丸发射速度,同时氮气能够降低气室平均温度,提升反应气体的能量利用率;存在反应气体的优化配比,在保持初始压力不变的条件下,通过注入适量的氮气能够在提高能量利用率的同时得到较高的发射速度。

     

  • 图  气体炮结构示意图

    Figure  1.  Structure diagram of gas gun

    图  氢氧爆轰气体炮数值计算模型

    Figure  2.  Numerical simulation model of detonation-driven gas gun using hydrogen-oxygen mixture

    图  气体炮发射装置

    Figure  3.  Gas gun launcher

    图  弹丸、弹夹和弹托

    Figure  4.  Projectile, gripper and sabot

    图  测速网靶

    Figure  5.  Velocity measuring net target

    图  初始压力对弹底压力和发射速度的影响

    Figure  6.  Influence of initial pressure on projectile bottom pressure and launching velocity

    图  初始压力对气室平均温度和压力的影响

    Figure  7.  Influence of initial pressure on average temperature and pressure of gas chamber

    图  氮气含量对弹底压力和发射速度的影响

    Figure  8.  Influence of nitrogen content on projectile bottom pressure and launching velocity

    图  氮气含量对气室平均温度和压力的影响

    Figure  9.  Influence of nitrogen content on average temperature and pressure of gas chamber

    图  10  氮气含量对氢气剩余质量的影响

    Figure  10.  Influence of nitrogen content on residual mass of hydrogen

    图  11  工况D-1中弹丸启动前瞬间气室温度和压力分布云图

    Figure  11.  Temperature and pressure cloud charts of gas chamber immediately before projectile start in case D-1

    图  12  反应气体配比对弹底压力和发射速度的影响

    Figure  12.  Influence of reaction gas ratio on projectile bottom pressure and launching velocity

    图  13  反应气体配比对气室平均温度和压力的影响

    Figure  13.  Influence of reaction gas ratio on average temperature and pressure of gas chamber

    表  1  9组分19步氢氧化学反应机理

    Table  1.   Mechanism of 9-component 19-step hydrogen-oxygen chemical reaction

    StepReaction$ A/( $cm·mol·s·K$ ) $$ n $$ {E}_{\mathrm{a}} $/(J·mol−1)
    1H + O2 = O + OH1.04 × 101406.41 × 104
    2O + H2 = H + OH3.82 × 101203.33 × 104
    3H2 + OH = H2O + H2.16 × 1081.511.44 × 104
    4OH + OH = O + H2O3.34 × 1042.42−8.08 × 103
    5H2 + M = H + H + M4.58 × 1019−1.40 4.35 × 105
    6O + O + M = O2 + M6.16 × 1015−0.50 0
    7O + H + M = OH + M4.71 × 1018−1.00 0
    8H2O + M = H + OH + M6.06 × 1027−3.32 5.05 × 105
    9H + O2 (+M) = HO2 (+M)4.65 × 10120.440
    10 HO2 + H = H2 + O22.75 × 1062.09−6.07 × 103
    11 HO2 + H = OH + OH7.08 × 101301.23 × 103
    12 HO2 + O = O2 + OH2.85 × 10101.00−3.03 × 103
    13 HO2 + OH = H2O + O22.89 × 10130−2.08 × 103
    14 HO2 + HO2 = H2O2 + O24.20 × 101405.02 × 104
    15 H2O2 (+M) = OH + OH(+M)2.00 × 10120.902.04 × 105
    16 H2O2 + H = H2O + OH2.41 × 101301.66 × 104
    17 H2O2 + H = HO2 + H24.82 × 101303.33 × 104
    18 H2O2 + O = OH + HO29.55 × 1062.001.66 × 104
    19 H2O2 + OH = HO2 + H2O1.74 × 101201.33 × 103
      Note: M is the third body[9].
    下载: 导出CSV

    表  2  实验工况

    Table  2.   Experimental conditions

    Case No.${p}{_{\mathrm{N}_2}}$/MPa${p}{_{\mathrm{H}_2}}$/MPa${p}{_{\mathrm{O}_2}}$/MPa${p}{_{0}}$/MPa${x}{_{\mathrm{N}_2}}$/%
    A-101.000.501.500
    A-202.001.003.000
    A-302.501.253.750
    B-10.501.000.502.0025.0
    C-11.001.000.502.5040.0
    下载: 导出CSV

    表  3  实验和计算得到的数据及误差

    Table  3.   Data and errors of experiments and calculations

    Case No.${v}{_{\mathrm{e} }}$/(m·s−1)${v}{_{\mathrm{c} }}$/(m·s−1)${\eta }{_{\mathrm{e} }}$/%${\eta }{_{\mathrm{c} }}$/%${\delta }{_{v}}$/%${\delta }{_\eta }$/%
    A-1320.1333.38.39.04.18.4
    A-2467.9472.98.99.11.12.2
    A-3531.6523.59.28.91.53.3
    B-1365.4394.410.8 12.6 7.916.7
    C-1448.3438.616.3 15.6 2.24.3
    下载: 导出CSV

    表  4  计算工况及数据

    Table  4.   Calculation conditions and data

    Case No.$p{_{{\rm{N}}_2}} $/MPa$p{_{ {\rm{H} }_2} } $/MPa$p{_{ {\rm{O} }_2} } $/MPa${p}{_{0}}$/MPa${x}{_{\mathrm{N}_2}}$/%${v}{_{\mathrm{c} }}$/(m·s−1)${\eta }{_{\mathrm{c} }}$/%
    A-101.000.501.500333.3 9.0
    A-202.001.003.000472.9 9.1
    A-302.501.253.750523.5 8.9
    A-404.002.006.000669.8 9.1
    B-10.501.000.502.0025.0394.412.6
    B-20.502.201.103.8013.2541.310.8
    C-11.001.000.502.5040.0438.615.6
    C-21.101.800.903.8028.9534.212.9
    D-12.001.000.503.5057.1457.317.0
    D-22.001.200.603.8052.6518.818.2
    下载: 导出CSV
  • [1] 林俊德, 张向荣, 朱玉荣, 等. 超高速撞击实验的三级压缩气炮技术 [J]. 爆炸与冲击, 2012, 32(5): 483–489. doi: 10.3969/j.issn.1001-1455.2012.05.006

    LIN J D, ZHANG X R, ZHU Y R, et al. The technique of three-stage compressed-gas gun for hypervelocity impact [J]. Explosion and Shock Waves, 2012, 32(5): 483–489. doi: 10.3969/j.issn.1001-1455.2012.05.006
    [2] 姜宗林, 滕宏辉, 刘云峰. 气相爆轰物理的若干研究进展 [J]. 力学进展, 2012, 42(2): 129–140. doi: 10.6052/1000-0992-2012-2-20120202

    JIANG Z L, TENG H H, LIU Y F. Some research progress on gaseous detonation physics [J]. Advances in Mechanics, 2012, 42(2): 129–140. doi: 10.6052/1000-0992-2012-2-20120202
    [3] PRESLES H N, BAUER P. Detonation products gun [J]. Review of Scientific Instruments, 1983, 54(11): 1511–1512. doi: 10.1063/1.1137278
    [4] MAEDA S, KANNO S, KOTO R, et al. Experiment of projectile acceleration using a gaseous detonation driven gas gun [J]. Transactions of the JSME, 2015, 81(822): 14–00332. doi: 10.1299/transjsme.14-00332
    [5] 薛一江, 张庆明, 龙仁荣, 等. 氢氧爆轰驱动轻气炮技术实验研究[C]//中国力学大会-2017暨庆祝中国力学学会成立60周年大会论文集. 北京: 中国力学学会, 2017: 9.
    [6] 王健平, 周蕊, 武丹. 连续旋转爆轰发动机的研究进展 [J]. 实验流体力学, 2015, 29(4): 12–25. doi: 10.11729/syltlx20150048

    WANG J P, ZHOU R, WU D. Progress of continuously rotating detonation engine research [J]. Journal of Experiments in Fluid Mechanics, 2015, 29(4): 12–25. doi: 10.11729/syltlx20150048
    [7] 俞鸿儒. 探索发展激波风洞爆轰驱动技术 [J]. 力学学报, 2011, 43(6): 978–983. doi: 10.6052/0459-1879-2011-6-lxxb2011-331

    YU H R. Development study of detonation driving techniques for a shock tunnel [J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6): 978–983. doi: 10.6052/0459-1879-2011-6-lxxb2011-331
    [8] 周凯, 汪球, 胡宗民, 等. 爆轰驱动膨胀管性能研究 [J]. 航空学报, 2016, 37(3): 810–816. doi: 10.7527/S1000-6893.2015.0128

    ZHOU K, WANG Q, HU Z M, et al. Performance study of a detonation-driven expansion tube [J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3): 810–816. doi: 10.7527/S1000-6893.2015.0128
    [9] BURKE M P, CHAOS M, JU Y G, et al. Comprehensive H2/O2 kinetic model for high-pressure combustion [J]. International Journal of Chemical Kinetics, 2012, 44(7): 444–474. doi: 10.1002/kin.20603
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  2089
  • HTML全文浏览量:  799
  • PDF下载量:  60
出版历程
  • 收稿日期:  2021-04-21
  • 修回日期:  2021-05-05

目录

    /

    返回文章
    返回