冲击载荷下分支交错层状仿生复合材料动态断裂行为的实验研究和数值模拟

张海广 王瑜 安连浩 王可 武晓东

张海广, 王瑜, 安连浩, 王可, 武晓东. 冲击载荷下分支交错层状仿生复合材料动态断裂行为的实验研究和数值模拟[J]. 高压物理学报, 2022, 36(1): 014101. doi: 10.11858/gywlxb.20210776
引用本文: 张海广, 王瑜, 安连浩, 王可, 武晓东. 冲击载荷下分支交错层状仿生复合材料动态断裂行为的实验研究和数值模拟[J]. 高压物理学报, 2022, 36(1): 014101. doi: 10.11858/gywlxb.20210776
ZHANG Haiguang, WANG Yu, AN Lianhao, WANG Ke, WU Xiaodong. Experimental Study and Numerical Simulation of Dynamic Fracture Behavior of Branch Staggered Laminated Biomimetic Composites under Impact Loading[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 014101. doi: 10.11858/gywlxb.20210776
Citation: ZHANG Haiguang, WANG Yu, AN Lianhao, WANG Ke, WU Xiaodong. Experimental Study and Numerical Simulation of Dynamic Fracture Behavior of Branch Staggered Laminated Biomimetic Composites under Impact Loading[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 014101. doi: 10.11858/gywlxb.20210776

冲击载荷下分支交错层状仿生复合材料动态断裂行为的实验研究和数值模拟

doi: 10.11858/gywlxb.20210776
基金项目: 国家自然科学基金(11702185);山西省关键核心技术和共性技术研发攻关专项项目(2020xxx017)
详细信息
    作者简介:

    张海广(1990-),男,硕士研究生,主要从事仿生复合材料研究. E-mail:1071544066@qq.com

    通讯作者:

    武晓东(1983-),男,博士,副教授,主要从事仿生复合材料研究. E-mail:wuxiaodong@tyut.edu.cn

  • 中图分类号: O347.3

Experimental Study and Numerical Simulation of Dynamic Fracture Behavior of Branch Staggered Laminated Biomimetic Composites under Impact Loading

  • 摘要: 通过三点弯动态冲击实验和数值模拟方法,研究了分支交错层状仿生复合材料的动态断裂韧性。首先设计并制备了分支交错层状仿贝壳复合材料试样,即将一种脆性刚性材料和一种橡胶类材料分别作为复合材料的硬质层和软胶层;随后采用改进的分离式Hopkinson压杆装置进行了三点弯冲击实验;接着讨论了初始冲击速度、硬质材料长宽比、软质材料层厚度对复合材料试样动态断裂行为的影响;最后采用ABAQUS有限元数值模拟,研究了不同宽度和不同冲击方向对复合材料试样动态断裂韧性和裂纹扩展的影响。结果表明:随着冲击速度和硬质材料长宽比增加、软胶层厚度减小,裂纹越倾向于沿直线扩展,反之,裂纹越倾向于绕过硬质材料沿着软胶层呈折线扩展;试样的峰值动载荷和起裂时间也随之增大。有限元模拟结果表明:随着结构总宽度的增大,试样断裂韧性增加,裂纹倾向于绕过硬质材料沿着软胶层扩展;采用实验设计的冲击方向时,试样的断裂韧性高于其他方向。

     

  • 图  试样模型示意图

    Figure  1.  Schematic diagram of sample model

    图  分离式Hopkinson压杆动态三点弯冲击装置

    Figure  2.  Dynamic three-point bending impact device of split Hopkinson pressure bar

    1. Strain gauge; 2. Sample; 3. Incident bar; 4. Laser velocity measurement; 5. Cylinder.

    图  应变片信号

    Figure  3.  Strain gauge signals

    图  起裂功

    Figure  4.  Work of initial fracture

    图  断口形貌的SEM图像

    Figure  5.  Morphology of the fracture observed by SEM

    图  不同冲击速度下T = 0.16 mm、$ {\lambda}$ = 1时试样的裂纹扩展

    Figure  6.  Crack propagation at T = 0.16 mm and $ {\lambda}$ = 1 under different impact velocities

    图  T = 0.24 mm、$ {\lambda}$ = 1时试样在不同冲击速度下的动载荷-位移曲线

    Figure  7.  Dynamic load-displacement curves of specimen with T = 0.24 mm, $ {\lambda}$ = 1 under different impact velocities

    图  T = 0.24 mm、${\lambda}$ = 1时试样在不同冲击速度下的起裂功和起裂时间

    Figure  8.  Crack initiation work and initiation time of sepcimen with T = 0.24 mm, ${\lambda}$ = 1 under different impact velocities

    图  T = 0.28 mm、${\lambda}$ = 2时试样在不同冲击速度下的动载荷-位移曲线

    Figure  9.  Dynamic load-displacement curves of specimen with T = 0.28 mm, ${\lambda}$ = 2 under different impact velocities

    图  10  T = 0.28 mm、${\lambda}$ = 2时试样在不同冲击速度下起裂功和起裂时间的关系

    Figure  10.  Crack initiation work and crack initiation time of specimen with T = 0.28 mm, ${\lambda}$ = 2 under different impact velocities

    图  11  T = 0.16 mm时试样在14.00 m/s冲击速度下的裂纹扩展

    Figure  11.  Crack propagation of T = 0.16 mm specimen under 14.00 m/s impact velocity

    图  12  T = 0.16 mm时不同长宽比试样在相同冲击速度下的动载荷-位移曲线

    Figure  12.  Dynamic load-displacement curves of specimens with T = 0.16 mm and different aspect ratios under the same impact velocity

    图  13  T = 0.24 mm时不同长宽比试样在相同冲击速度下的动载荷-位移曲线

    Figure  13.  Dynamic load-displacement curves of specimens with T = 0.16 mm and different aspect ratios under the same impact velocity

    图  15  T = 0.32 mm时不同长宽比试样在相同冲击速度下的动载荷-位移曲线

    Figure  15.  Dynamic load-displacement curves of specimens with T = 0.32 mm and different aspect ratios under the same impact velocity

    图  14  T = 0.28 mm时不同长宽比试样在相同冲击速度下的动载荷-位移曲线

    Figure  14.  Dynamic load-displacement curves of specimens with T = 0.28 mm and different aspect ratios under the same impact velocity

    图  16  具有不同长宽比试样的起裂时间

    Figure  16.  Crack initiation time of samples with different aspect ratios

    图  17  具有不同长宽比试样的起裂功

    Figure  17.  Crack initiation work of specimens with different aspect ratios

    图  18  14.00 m/s冲击速度下${\lambda}$ = 2试样的裂纹扩展:(a) T =0.16 mm,(b) T =0.20 mm,(c) T =0.24 mm,(d) T =0.28 mm

    Figure  18.  Crack propagation of specimen with ${\lambda}$ = 2 under 14.00 m/s impact velocity: (a) T =0.16 mm, (b) T =0.20 mm, (c) T =0.24 mm, (d) T =0.28 mm

    图  19  相同冲击速度下${\lambda}$ = 1时不同软胶层厚度试样的动载荷-位移曲线

    Figure  19.  Dynamic load-displacement curve of specimens with ${\lambda}$ = 1 and different thicknesses of soft rubber layer under the same impact velocity

    图  20  相同冲击速度下${\lambda}$ = 1时不同软胶层厚度试样的起裂功和起裂时间

    Figure  20.  Crack initiation work and time of specimens with ${\lambda}$ = 1 and different thicknesses of soft rubber layer under the same impact velocity

    图  21  相同冲击速度下${\lambda}$ = 2时不同软胶层厚度试样的动载荷-位移曲线

    Figure  21.  Dynamic load-displacement curve of specimens with ${\lambda}$ = 2 and different thicknesses of soft rubber layer at the same impact velocity

    图  22  相同冲击速度下${\lambda}$ = 2时不同软胶层厚度试样的起裂功和起裂时间

    Figure  22.  Crack initiation work and time of specimens with ${\lambda}$ = 2 and different thicknesses of soft rubber layer at the same impact velocity

    图  23  有限元几何模型及网格划分

    Figure  23.  Finite element geometrical model and meshing

    图  24  ${\lambda}$ = 1、T = 0.16 mm时试样的动载荷-位移曲线的实验与数值模拟结果对比

    Figure  24.  Comparison between dynamic load-displacement experiment and numerical simulation of the specimen with ${\lambda}$ = 1, T = 0.16 mm

    图  25  ${\lambda}$ = 1、T = 0.20 mm时试样的动载荷-位移曲线的实验与数值模拟结果对比

    Figure  25.  Comparison between dynamic load-displacement experiment and numerical simulation of the specimen with ${\lambda}$ = 1, T = 0.20 mm

    图  26  不同总宽度试样的动载荷-位移曲线

    Figure  26.  Dynamic load-displacement curves of specimens with different total widths

    图  27  不同总宽度试样的裂纹起裂时间和损伤耗散能量

    Figure  27.  Crack initiation time and damage dissipation energy of specimens with different total widths

    图  28  3种不同总宽度试样的裂纹扩展形式

    Figure  28.  Three crack propagation forms of specimens with different total widths

    图  29  3种不同冲击方向的试样

    Figure  29.  Three samples with different impact directions

    图  30  不同冲击方向试样的动载荷-位移曲线

    Figure  30.  Dynamic load-displacement curves of specimens in different impact directions

    图  31  不同冲击方向下裂纹起裂时间和损伤耗散能量

    Figure  31.  Crack initiation time and damage dissipation energy in different impact directions

    表  1  动态实验测试的参数值

    Table  1.   Parameters of the dynamic experimental tests

    A/mm2E/GPa${\,\rho }$/(kg·m−3)C0/(m·s−1)C1/(m·s−1)
    19.620078005603.71595.8
    下载: 导出CSV
  • [1] 邵浩彬, 朱军, 周琦, 等. 三角帆蚌贝壳的微结构及尺寸变化特征 [J]. 复合材料学报, 2019, 36(10): 2398–2406. doi: 10.13801/j.cnki.fhclxb.20190301.001

    SHAO H B, ZHU J, ZHOU Q, et al. Characteristics of microstructure and size change of the shell of Hyriopsis cumingii [J]. Acta Materiae Compositae Sinica, 2019, 36(10): 2398–2406. doi: 10.13801/j.cnki.fhclxb.20190301.001
    [2] 王振兴, 原梅妮, 李立州, 等. 贝壳珍珠母增韧机理研究进展 [J]. 材料导报, 2015, 29(8): 98–102.

    WANG Z X, YUAN M N, LI L Z, et al. Research progress of toughening mechanisms of nacre shell [J]. Materials Reports, 2015, 29(8): 98–102.
    [3] SHIN Y A, YIN S, LI X, et al. Nanotwin-governed toughening mechanism in hierarchically structured biological materials [J]. Nature Communications, 2016, 7: 10772. doi: 10.1038/ncomms10772
    [4] MEYERS M A, CHEN P Y, LIN A Y M, et al. Biological materials: structure and mechanical properties [J]. Progress in Materials Science, 2008, 53(1): 1–206. doi: 10.1016/j.pmatsci.2007.05.002
    [5] 白明敏, 李伟信, 洪毓鸿, 等. 仿贝壳正六边形Al2O3/环氧树脂层状复合材料的制备与表征 [J]. 陶瓷学报, 2019, 40(1): 80–86.

    BAI M M, LI W X, HONG Y H, et al. Preparation and characterization of shell-like hexagonal Al2O3/epoxy resin laminated composites [J]. Journal of Ceramics, 2019, 40(1): 80–86.
    [6] 吴和成, 肖毅华. 陶瓷和仿珍珠母陶瓷/聚脲复合结构的冲击损伤对比 [J]. 高压物理学报, 2020, 34(2): 024201. doi: 10.11858/gywlxb.20190808

    WU H C, XIAO Y H. Comparison of impact damage between ceramic structure and nacre-like ceramic/polyurea composite structure [J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 024201. doi: 10.11858/gywlxb.20190808
    [7] 平冠群, 史金飞, 高海涛, 等. 基于AFM的仿生贝壳增材制造模型表达 [J]. 现代制造技术与装备, 2020(9): 14–16.

    PING G Q, SHI J F, GAO H T, et al. AFM based modeling of bionic shell additive manufacturing [J]. Modern Manufacturing Technology and Equipment, 2020(9): 14–16.
    [8] 杨森, 靳丽, 董杰, 等. 金属基仿生贝壳材料的制备方法 [J]. 中南大学学报(自然科学版), 2020, 51(11): 3199–3210. doi: 10.11817/j.issn.1672-7207.2020.11.023

    YANG S, JIN L, DONG J, et al. Methods for preparing metal-based nacre-inspired composites [J]. Journal of Central South University (Science and Technology), 2020, 51(11): 3199–3210. doi: 10.11817/j.issn.1672-7207.2020.11.023
    [9] 马骁勇, 梁海弋, 王联凤. 三维打印贝壳仿生结构的力学性能 [J]. 科学通报, 2016, 61(7): 728–734.

    MA X Y, LIANG H Y, WANG L F. Multi-materials 3D printing application of shell biomimetic structure [J]. Chinese Science Bulletin, 2016, 61(7): 728–734.
    [10] DIMAS L S, BRATZEL G H, EYLON I, et al. Tough composites inspired by mineralized natural materials: computation, 3D printing, and testing [J]. Advanced Functional Materials, 2013, 23(36): 4629–4638. doi: 10.1002/adfm.201300215
    [11] 陈昊宇, 殷莎, 胡建星, 等. 航天器冲击防护用热塑性仿生复合材料的弯曲性能研究 [J]. 航天器环境工程, 2019, 36(2): 151–155. doi: 10.12126/see.2019.02.008

    CHEN H Y, YIN S, HU J X, et al. Bending properties of thermoplastic bioinspired helicoidal laminated composites used in impact protection of spacecraft [J]. Spacecraft Environment Engineering, 2019, 36(2): 151–155. doi: 10.12126/see.2019.02.008
    [12] 黄玉松, 郑威, 辛培训, 等. 贝壳珍珠层结构仿生复合材料研究 [J]. 工程塑料应用, 2008, 36(10): 21–25. doi: 10.3969/j.issn.1001-3539.2008.10.006

    HUANG Y S, ZHENG W, XIN P X, et al. Study on conch nacre structure bio-inspired composites [J]. Engineering Plastics Application, 2008, 36(10): 21–25. doi: 10.3969/j.issn.1001-3539.2008.10.006
    [13] ZHANG P, HEYNE M A, TO A C. Biomimetic staggered composites with highly enhanced energy dissipation: design, modeling, and test [J]. Journal of the Mechanics & Physics of Solids, 2015, 83: 285–300.
    [14] GU G X, TAKAFFOLI M, BUEHLER M J. Hierarchically enhanced impact resistance of bioinspired composites [J]. Advanced Materials, 2017, 29(28): 1700060. doi: 10.1002/adma.201700060
    [15] JIA Z, YANG Y, HOU S Y, et al. Biomimetic architected materials with improved dynamic performance [J]. Journal of the Mechanics and Physics of Solids, 2019, 125: 178–197. doi: 10.1016/j.jmps.2018.12.015
    [16] 郭历伦, 钟卫洲, 陈忠富, 等. 冲击载荷下镁铝合金裂纹动态扩展过程的数值模拟 [J]. 爆炸与冲击, 2016, 36(5): 648–654. doi: 10.11883/1001-1455(2016)05-0648-07

    GUO L L, ZHONG W Z, CHEN Z F, et al. Numerical research on dynamic fracture process of magnalium alloy under impact load [J]. Explosion and Shock Waves, 2016, 36(5): 648–654. doi: 10.11883/1001-1455(2016)05-0648-07
    [17] JIANG F C, LIU R T, ZHANG X X, et al. Evaluation of dynamic fracture toughness KId by Hopkinson pressure bar loaded instrumented Charpy impact test [J]. Engineering Fracture Mechanics, 2004, 71(3): 279–287. doi: 10.1016/S0013-7944(03)00139-5
    [18] 卢芳云, 陈荣, 林玉亮, 等. 霍普金森杆实验技术 [M]. 北京: 科学出版社, 2013: 227−247.

    LU F Y, CHEN R, LIN Y L, et al. Hopkinson bar techniques [M]. Beijing: Science Press, 2013: 227−247.
    [19] WU X D, MENG X S, ZHANG H G. An experimental investigation of the dynamic fracture behavior of 3D printed nacre-like composites [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 112: 104068. doi: 10.1016/j.jmbbm.2020.104068
    [20] 孟祥生, 武晓东, 张海广. 3D打印浆砌层合结构复合材料层间断裂韧性的数值模拟 [J]. 高压物理学报, 2020, 34(4): 044206. doi: 10.11858/gywlxb.20190827

    MENG X S, WU X D, ZHANG H G. Numerical simulation on interlaminar fracture toughness of 3D printed mortar laminated composites [J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044206. doi: 10.11858/gywlxb.20190827
    [21] GU G X, TAKAFFOLI M, HSIEH A J, et al. Biomimetic additive manufactured polymer composites for improved impact resistance [J]. Extreme Mechanics Letters, 2016, 9: 317–323. doi: 10.1016/j.eml.2016.09.006
  • 加载中
图(31) / 表(1)
计量
  • 文章访问数:  817
  • HTML全文浏览量:  455
  • PDF下载量:  79
出版历程
  • 收稿日期:  2021-04-18
  • 修回日期:  2021-05-11

目录

    /

    返回文章
    返回