动态预压缩对CoCrFeNiMn高熵合金微尺度压入硬度的影响

许海涛 邱吉 肖革胜 姚永永 树学峰

许海涛, 邱吉, 肖革胜, 姚永永, 树学峰. 动态预压缩对CoCrFeNiMn高熵合金微尺度压入硬度的影响[J]. 高压物理学报, 2021, 35(6): 064101. doi: 10.11858/gywlxb.20210773
引用本文: 许海涛, 邱吉, 肖革胜, 姚永永, 树学峰. 动态预压缩对CoCrFeNiMn高熵合金微尺度压入硬度的影响[J]. 高压物理学报, 2021, 35(6): 064101. doi: 10.11858/gywlxb.20210773
XU Haitao, QIU Ji, XIAO Gesheng, YAO Yongyong, SHU Xuefeng. Effect of Dynamic Pre-Compression on Micro-Scale Indentation Hardness of CoCrFeNiMn High-Entropy Alloy[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 064101. doi: 10.11858/gywlxb.20210773
Citation: XU Haitao, QIU Ji, XIAO Gesheng, YAO Yongyong, SHU Xuefeng. Effect of Dynamic Pre-Compression on Micro-Scale Indentation Hardness of CoCrFeNiMn High-Entropy Alloy[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 064101. doi: 10.11858/gywlxb.20210773

动态预压缩对CoCrFeNiMn高熵合金微尺度压入硬度的影响

doi: 10.11858/gywlxb.20210773
基金项目: 国家自然科学基金(11772217);山西省自然科学基金(201801D121015)
详细信息
    作者简介:

    许海涛(1995-),男,硕士研究生,主要从事弹塑性力学研究. E-mail:18435152022@163.com

    通讯作者:

    树学峰(1964-),男,教授,主要从事弹塑性力学研究. E-mail:shuxuefeng@tyut.edu.cn

  • 中图分类号: O347

Effect of Dynamic Pre-Compression on Micro-Scale Indentation Hardness of CoCrFeNiMn High-Entropy Alloy

  • 摘要: 高熵合金具有优异的力学性能,如高硬度、高强度、优良的耐磨能力,以及优异的磁性能、高电阻率、高温力学和抗氧化性能等,因此具有非常广阔的应用前景。在高熵合金的应用中会出现合金内部预存塑性应变的情况,然而人们对高熵合金塑性变形后的力学性能研究较少,如微尺度压缩下的硬度等。在微压入测试中,由于存在尺度效应,需要采用相应的微压入测试理论来剔除尺度效应的影响。为此,采用分离式霍普金森压杆对CoCrFeNiMn高熵合金进行室温和高温(600、800、1000 ℃)动态预压缩,使合金具有不同的预压缩塑性应变,采用描述尺度效应的Nix-Gao微尺度压入理论模型,对不同塑性变形的动态预压缩样品在微尺度下的硬度进行表征。结果表明:在宏观预压缩下,不同的塑性变形对合金的微尺度压入硬度具有显著的影响,与轴向压缩相比,径向压缩下剔除尺度效应的硬度更大。该研究方法建立了宏观塑性变形与微尺度压入硬度之间的联系,也为实现通过微尺度压入测试判定材料内部塑性变形提供了新思路。

     

  • 图  CoCrFeNiMn高熵合金样品

    Figure  1.  CoCrFeNiMn high-entropy alloy sample

    图  CoCrFeNiMn 高熵合金的能谱

    Figure  2.  Energy spectrum (EDS) of CoCrFeNiMn high-entropy alloy

    图  CoCrFeNiMn高熵合金的电子背散射衍射反极图与XRD谱

    Figure  3.  Electron backscatter diffraction inverse pole figure and XRD pattern of CoCrFeNiMn high-entropy alloy

    图  动态预压缩后的样品

    Figure  4.  Samples after dynamic pre-compression

    图  纳米压痕测试点阵局部示意图

    Figure  5.  Partial schematic of nanoindentation test dot matrix

    图  纳米压入实验的载荷-深度曲线

    Figure  6.  Load-depth curve in nanoindentation experiment

    图  CoCrFeNiMn高熵合金的轴向压缩载荷-深度曲线

    Figure  7.  Load-depth curves of CoCrFeNiMn high-entropy alloy in axial compression

    图  CoCrFeNiMn高熵合金的径向压缩载荷-深度曲线

    Figure  8.  Radial compression load-depth curves of CoCrFeNiMn high-entropy alloy

    图  CoCrFeNiMn高熵合金轴向压缩的刚度-深度曲线

    Figure  9.  Stiffness-depth curves of CoCrFeNiMn high-entropy alloy in axial compression

    图  10  CoCrFeNiMn高熵合金径向压缩的刚度-深度曲线

    Figure  10.  Radial compression stiffness-depth repeatability curves of CoCrFeNiMn high-entropy alloy

    图  11  CoCrFeNiMn高熵合金的硬度-深度曲线

    Figure  11.  Hardness-depth curve of CoCrFeNiMn high-entropy alloy

    图  12  纳米压入测试中室温动态预压缩样品的H2与1/h的关系

    Figure  12.  Relationship between H2 and 1/h of the room temperature dynamic pre-compression samples in the nanoindentation test

    图  13  纳米压入测试中高温动态预压缩样品的H2与1/h的关系

    Figure  13.  Relationship between H2 and 1/h of the high-temperature dynamic pre-compression sample in the nanoindentation test

    表  1  室温动态预压缩下不同塑性变形对应的剔除尺度效应的硬度

    Table  1.   Scale effect elminated hardness of different plastic deformationsunder dynamic pre-compression at room temperature

    Plastic strain/%H0/GPa
    Axial compressionRadial compression
    233.063.22
    403.724.05
    473.984.28
    下载: 导出CSV

    表  2  高温动态预压缩下不同塑性变形对应的剔除尺度效应的硬度

    Table  2.   Scale effect eliminated hardness of different plastic deformations under high temperature dynamic pre-compression

    Plastic strain/%H0/GPa
    Axial compressionRadial compression
    513.703.92
    613.283.54
    722.962.69
    下载: 导出CSV
  • [1] 叶均蔚, 陈瑞凯. 高熵合金 [J]. 科学发展, 2004(5): 16–21.

    YE J W, CHEN R K. High-entropy alloys [J]. Science Development, 2004(5): 16–21.
    [2] FANG S S, XIAO X S, XIA L, et al. Relationship between the widths of supercooled liquid regions and bond parameters of Mg-based bulk metallic glasses [J]. Journal of Non-Crystalline Solids, 2003, 321(1/2): 120–125. doi: 10.1016/S0022-3093(03)00155-8
    [3] GLUDOVATZ B, HOHENWARTER A, CATOOR D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345(6201): 1153–1158. doi: 10.1126/SCIENCE.1254581
    [4] HE F, WANG Z J, WU Q F, et al. Phase separation of metastable CoCrFeNi high entropy alloy at intermediate temperatures [J]. Scripta Materialia, 2017, 126: 15–19. doi: 10.1016/j.scriptamat.2016.08.008
    [5] LIU W H, WU Y, HE J Y, et al. Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy [J]. Scripta Materialia, 2013, 68(7): 526–529. doi: 10.1016/j.scriptamat.2012.12.002
    [6] LU Z P, WANG H, CHEN M W, et al. An assessment on the future development of high-entropy alloys: summary from a recent workshop [J]. Intermetallics, 2015, 66: 67–76. doi: 10.1016/j.intermet.2015.06.021
    [7] 张泰华. 微/纳米力学测试技术及其应用 [M]. 北京: 机械工业出版社, 2005.

    ZHANG T H. Test technology and applications of micro/nano-mechanics [M]. Beijing: China Machine Press, 2005.
    [8] OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments [J]. Journal of Materials Research, 1992, 7(6): 1564–1583. doi: 10.1557/JMR.1992.1564
    [9] PHARR G M, OLIVER W C, BROTZEN F R. On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation [J]. Journal of Materials Research, 1992, 7(3): 613–617. doi: 10.1557/JMR.1992.0613
    [10] PETHICA J B, OLIVER W C. Tip surface interactions in STM and AFM [J]. Physica Scripta, 1987, 1987(T19A): 61–66.
    [11] NIX W D, GAO H J. Indentation size effects in crystalline materials: a law for strain gradient plasticity [J]. Journal of the Mechanics and Physics of Solids, 1998, 46(3): 411–425. doi: 10.1016/S0022-5096(97)00086-0
    [12] DIRRAS G, COUQUE H, LILENSTEN L, et al. Mechanical behavior and microstructure of Ti20Hf20Zr20Ta20Nb20 high-entropy alloy loaded under quasi-static and dynamic compression conditions [J]. Materials Characterization, 2016, 111: 106–113. doi: 10.1016/j.matchar.2015.11.018
    [13] PARK J M, MOON J, BAE J W, et al. Strain rate effects of dynamic compressive deformation on mechanical properties and microstructure of CoCrFeMnNi high-entropy alloy [J]. Materials Science and Engineering: A, 2018, 719: 155–163. doi: 10.1016/j.msea.2018.02.031
    [14] 蔡珣. 材料科学与工程基础 [M]. 上海: 上海交通大学出版社, 2010.

    CAI X. Fundamentals of materials science and engineering [M]. Shanghai: Shanghai Jiao Tong University Press, 2010.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  1053
  • HTML全文浏览量:  557
  • PDF下载量:  37
出版历程
  • 收稿日期:  2021-04-13
  • 修回日期:  2021-05-19

目录

    /

    返回文章
    返回