爆炸载荷下中空钢化夹层玻璃的动态响应

牛欢欢 张英杰 李志强

牛欢欢, 张英杰, 李志强. 爆炸载荷下中空钢化夹层玻璃的动态响应[J]. 高压物理学报, 2021, 35(6): 064102. doi: 10.11858/gywlxb.20210764
引用本文: 牛欢欢, 张英杰, 李志强. 爆炸载荷下中空钢化夹层玻璃的动态响应[J]. 高压物理学报, 2021, 35(6): 064102. doi: 10.11858/gywlxb.20210764
NIU Huanhuan, ZHANG Yingjie, LI Zhiqiang. Dynamic Response of Hollow Tempered Laminated Glass under Explosive Load[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 064102. doi: 10.11858/gywlxb.20210764
Citation: NIU Huanhuan, ZHANG Yingjie, LI Zhiqiang. Dynamic Response of Hollow Tempered Laminated Glass under Explosive Load[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 064102. doi: 10.11858/gywlxb.20210764

爆炸载荷下中空钢化夹层玻璃的动态响应

doi: 10.11858/gywlxb.20210764
基金项目: 国家自然科学基金(11672199,11972244);山西省自然科学基础研究项目(201601D011011)
详细信息
    作者简介:

    牛欢欢(1996- ),男,硕士研究生,主要从事爆炸冲击研究. E-mail:1137390516@qq.com

    通讯作者:

    李志强(1973- ),男,教授,主要从事爆炸冲击与计算力学研究. E-mail:lizhiqiang@tyut.edu.cn

  • 中图分类号: O342

Dynamic Response of Hollow Tempered Laminated Glass under Explosive Load

  • 摘要: 采用自行设计的爆炸实验系统,研究了面内尺寸为300 mm × 300 mm和1 000 mm × 1 000 mm的中空钢化夹层玻璃在爆炸载荷下的动态响应规律,分析了PVB胶层厚度、空气层厚度、炸药量以及爆炸距离对中空钢化夹层玻璃抗爆性能的影响。结果表明:(1) 中空钢化夹层玻璃的抗爆性能随着面内尺寸的增加而增强;(2) 无论是大尺寸还是小尺寸的中空钢化夹层玻璃,随着PVB胶层厚度的增加,结构整体的强度增大,试样的承载能力逐渐增强,随着中间空气层厚度的增加,结构整体的稳定性降低,抗爆能力减弱;(3) 改变炸药量和爆炸距离对中空钢化夹层玻璃的动态响应有很大影响,随着炸药量增加、爆炸距离减小,中空钢化夹层玻璃的破坏程度逐渐增大。

     

  • 图  中空钢化夹层玻璃

    Figure  1.  Hollow tempered laminated glass

    图  弹道冲击摆系统

    Figure  2.  Ballistic impact pendulum system

    图  大尺寸玻璃的固定承载装置

    Figure  3.  Fixed bearing device for large-size glass

    图  冲击摆位移-时间曲线

    Figure  4.  Displacement-time curve of impact pendulum

    图  不同PVB胶层厚度试样的最终模态(300 mm × 300 mm)

    Figure  5.  Final modal of samples with different PVB layer thicknesses (300 mm × 300 mm)

    图  不同PVB胶层厚度试样内侧中心区域的局部放大照片

    Figure  6.  Enlarged views of inner center areas of samples with different thickness of PVB adhesive layer

    图  不同PVB胶层厚度试样的最终模态(1 000 mm × 1 000 mm)

    Figure  7.  Final modal of samples with different PVB layer thicknesses (1 000 mm × 1 000 mm)

    图  不同空气层厚度试样的最终模态(300 mm × 300 mm)

    Figure  8.  Final modal of samples with different air layer thicknesses (300 mm × 300 mm)

    图  不同空气层厚度试样内侧中心区域的局部放大图像

    Figure  9.  Enlarged views of inner center areas of samples with different air layer thicknesses

    图  10  不同空气层厚度试样的最终模态(1000 mm × 1000 mm)

    Figure  10.  Final modal of samples with different air layer thicknesses (1000 mm × 1000 mm)

    图  11  爆炸冲击波的压力-时间曲线[23]

    Figure  11.  Pressure-time curve of explosion shock wave[23]

    图  12  不同炸药量下试样的最终模态

    Figure  12.  Final modal of samples with different explosive mass

    图  13  不同炸药量下试样内侧中心区域的局部放大图像

    Figure  13.  Enlarged views of inner center areas of samples with different explosive mass

    图  14  不同爆炸距离下试样的最终模态

    Figure  14.  Final modal of samples with different explosion distances

    图  15  不同爆炸距离下试样内侧中心部分的局部放大图像

    Figure  15.  Enlarged views of inner center area of samples with different explosion distances

    表  1  试样分组

    Table  1.   Groups of the specimens

    Group No.In-plane size/
    (mm × mm)
    Thickness/mmW/gL/mm
    G1PVB1G2AG3PVB2G4
    1300 × 30060.456660.45645100
    60.766660.766
    61.146661.146
    61.526661.526
    1000 × 100060.766660.766120 100
    61.146661.146
    61.526661.526
    2300 × 30061.146661.14645100
    61.146861.146
    61.14610 61.146
    61.14612 61.146
    1000 × 100061.146661.146120 100
    61.146861.146
    61.14610 61.146
    3300 × 30060.766660.76640100
    45
    50
    4300 × 30061.146661.14640 50
    80
    120
    下载: 导出CSV

    表  2  不同PVB胶层厚度试样的凹陷深度和圆形脱离区域的范围

    Table  2.   Depression depth and circular detachment areas of samples with different PVB adhesive layer thicknesses

    PVB thickness/mmW/gL/mmh/mmD/mm
    0.76 12010053.4178.2
    1.14 12010042.7143.7
    1.52 12010031.5127.6
    下载: 导出CSV

    表  3  不同空气厚度试样的凹陷深度和圆形脱落区域的范围

    Table  3.   Depths of depression and the ranges of circular shedding areas of samples with different air thicknesses

    Air thickness/mmW/gL/mmh/mmD/mm
    612010038.3143.7
    812010046.6157.8
    1012010057.8162.3
    下载: 导出CSV
  • [1] 王承遇, 卢琪, 陶瑛. 玻璃的脆性(一) [J]. 玻璃与搪瓷, 2011, 39(6): 37–43. doi: 10.3969/j.issn.1000-2871.2011.06.009

    WANG C Y, LU Q, TAO Y. Brittleness of glass (1) [J]. Glass and Enamel, 2011, 39(6): 37–43. doi: 10.3969/j.issn.1000-2871.2011.06.009
    [2] 朱东辉. 建筑玻璃幕墙的类型特点及设计要点分析 [J]. 建材与装饰, 2020, 615(18): 81–82. doi: 10.3969/j.issn.1673-0038.2020.18.059

    ZHU D H. Analysis of type characteristics and design key points of architectural glass curtain wall [J]. Construction Materials and Decoration, 2020, 615(18): 81–82. doi: 10.3969/j.issn.1673-0038.2020.18.059
    [3] ZHANG X H, HAO H, WANG Z Q. Experimental investigation of monolithic tempered glass fragment characteristics subjected to blast loads [J]. Engineering Structures, 2014, 75: 259–275. doi: 10.1016/j.engstruct.2014.06.014
    [4] THOMPSON D, BROWN S, MALLONEE S, et al. Fatal and non-fatal injuries among U.S. air force personnel resulting from the terrorist bombing of the Khobar Towers [J]. Journal of Trauma-Injury Infection and Critical Care, 2004, 57(2): 208–215. doi: 10.1097/01.TA.0000142672.99660.80
    [5] OSNES K, HOLMEN J K, HOPPERSTAD O S, et al. Fracture and fragmentation of blast-loaded laminated glass: an experimental and numerical study [J]. International Journal of Impact Engineering, 2019, 132: 103334. doi: 10.1016/j.ijimpeng.2019.103334
    [6] WANG X E, YANG J, CHONG W T A, et al. Post-fracture performance of laminated glass panels under consecutive hard body impacts [J]. Composite Structures, 2020, 254: 112777. doi: 10.1016/j.compstruct.2020.112777
    [7] LI W H, LI C, QIU Y. Thermal stress analysis of photovoltaic hollow glass based on ANSYS [J]. Key Engineering Materials, 2013, 544: 339–342. doi: 10.4028/www.scientific.net/KEM.544.339
    [8] 史博, 张晓颖, 李阔, 等. 爆炸载荷下中空夹层玻璃的动力响应影响因素 [J]. 爆炸与冲击, 2018, 38(1): 119–123. doi: 10.11883/bzycj-2017-0018

    SHI B, ZHANG X Y, LI K, et al. Influencing factors of dynamic response of hollow laminated glass subjected to blast loads [J]. Explosion and Shock Waves, 2018, 38(1): 119–123. doi: 10.11883/bzycj-2017-0018
    [9] KUMAR P, SHUKLA A. Dynamic response of glass panels subjected to shock loading [J]. Journal of Non-Crystalline Solids, 2011, 357: 3917–3923. doi: 10.1016/j.jnoncrysol.2011.08.009
    [10] 杨璐, 张有振, 白音, 等. 单层与中空钢化玻璃火灾下破坏机理试验研究 [J]. 工业建筑, 2017, 47(5): 111–115.

    YANG L, ZHANG Y Z, BAI Y, et al. Experimental research on the failure mechanism of single-layer and mid-hollow tempered glass under fire condition [J]. Industrial Construction, 2017, 47(5): 111–115.
    [11] 姚芬, 张英杰, 姚蓬飞, 等. 对称与非对称钢化夹层玻璃的抗冲击性能 [J]. 高压物理学报, 2020, 34(4): 044103.

    YAO F, ZHANG Y J, YAO P F, et al. Impact resistance of symmetric and asymmetric tempered laminated glass [J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044103.
    [12] 陶志雄, 张其林, 陈俊, 等. 夹层玻璃PVB胶片抗剪性能试验研究 [J]. 结构工程师, 2011, 27(1): 134–138. doi: 10.3969/j.issn.1005-0159.2011.01.022

    TAO Z X, ZHANG Q L, CHEN J, et al. Experimental study on shearing properties of PVB films for laminated glass [J]. Structural Engineers, 2011, 27(1): 134–138. doi: 10.3969/j.issn.1005-0159.2011.01.022
    [13] 王明友. 新型车用夹层真空平板玻璃研究[D]. 扬州: 扬州大学, 2010.

    WANG M Y. Research on new type vacuum laminated glass for vehicle [D]. Yangzhou: Yangzhou University, 2010.
    [14] LARCHER M, SOLOMOS G, CASADEI F, et al. Experimental and numerical investigations of laminated glass subjected to blast loading [J]. International Journal of Impact Engineering, 2012, 39(1): 42–50. doi: 10.1016/j.ijimpeng.2011.09.006
    [15] WEI J, DHARANI L R. Fracture mechanics of laminated glass subjected to blast loading [J]. Theoretical and Applied Fracture Mechanics, 2005, 44(2): 157–167. doi: 10.1016/j.tafmec.2005.06.004
    [16] CASTORI G, SPERANZINI E. Structural analysis of failure behavior of laminated glass [J]. Composites Part B: Engineering, 2017, 125: 89–99. doi: 10.1016/j.compositesb.2017.05.062
    [17] 敬霖. 强动载荷作用下泡沬金属夹芯壳结构的动力学行为及其失效机理硏究[D]. 太原: 太原理工大学, 2012.

    JING L. The dynamics mechanical behavior and failure mechanism of sandwich shells with metallic foam cores under intensive loading [D]. Taiyuan: Taiyuan University of Technology, 2012.
    [18] 李胜杰. 爆炸载荷下夹层玻璃的动态响应及裂纹扩展的研究[D]. 太原: 太原理工大学, 2015.

    LI S J. Study on dynamic response and cracks propagation of laminated glass subjected to blast load [D]. Taiyuan: Taiyuan University of Technology, 2015.
    [19] 王志华, 李志强, 赵隆茂, 等. 多孔金属及其夹芯结构的冲击力学行为[C]//中国力学大会. 西安: 中国力学学会, 2013.

    WANG Z H, LI Z Q, ZHAO L M, et al. Impact mechanical behavior of porous metal and its sandwich structures [C]//The Chinese Congress of Theoretical and Applied Mechanics. Xi’an: The Chinese Society of Theoretical and Applied Mechanics, 2013.
    [20] 敬霖, 王志华, 赵隆茂. 爆炸荷载作用下结构冲量的测量 [J]. 实验力学, 2009, 24 (2): 151–156.

    JING L, WANG Z H, ZHAO L M. Measurement of impulse acted on a structure subjected to blast load [J]. Journal of Experimental Mechanics, 2009, 24 (2): 151–156.
    [21] SERAFINAVIČIUS T, LEBET J-P, LOUTER C, et al. Long-term laminated glass four point bending test with PVB, EVA and SG interlayers at different temperatures [J]. Procedia Engineering, 2013, 57: 996–1004. doi: 10.1016/j.proeng.2013.04.126
    [22] 邓荣兵, 金先龙, 陈峻. 中空夹胶玻璃幕墙爆炸响应的三维数值模拟 [J]. 上海交通大学学报, 2010, 44(10): 1456–1459.

    DENG R B, JIN X L, CHEN J. Three-dimensional numerical simulation for blast response of double laminated insulating glass curtain wall [J]. Journal of Shanghai Jiaotong University, 2010, 44(10): 1456–1459.
    [23] 张晓颖, 李胜杰, 李志强. 爆炸载荷作用下夹层玻璃动态响应的数值模拟 [J]. 兵工学报, 2018, 39(7): 1379–1388. doi: 10.3969/j.issn.1000-1093.2018.07.016

    ZHANG X Y, LI S J, LI Z Q. Numerical simulation of dynamic response of laminated glass subjected to blast load [J]. Acta Armamentarii, 2018, 39(7): 1379–1388. doi: 10.3969/j.issn.1000-1093.2018.07.016
    [24] HENRYCH J. 爆炸动力学及其应用[M]. 熊建国, 译. 北京: 科学出版社, 1987.

    HENRYCH J. The dynamics of explosion and its use [M]. Translated by XIONG J G. Beijing: Science Press, 1987.
    [25] YUNOSHEV A S, SIL’VESTROV V V, PLASTININ A V, et al. Influence of artificial pores on the detonation parameters of an emulsion explosive [J]. Combustion, Explosion, and Shock Waves, 2017, 53(2): 205–210. doi: 10.1134/S0010508217020113
    [26] BOBRESHOV A, USKOV G, NESKORODOV S, et al. Experimental measurement of impulse response UWB emitters [C]//2020 7th All-Russian Microwave Conference (RMC), 2020.
    [27] QUINN G D, SWAB J J, PATEL P. On radial, circumferential, and spiral cracks in fractured glass plates [J]. International Journal of Applied Glass Science, 2021, 12(2): 189–197. doi: 10.1111/ijag.15868
    [28] HU Y H, GU W B, LIU J Q, et al. Study on dynamic response of multi-degree-of-freedom explosion vessel system under impact load [J]. Defence Technology, 2020, 16(4): 777–786. doi: 10.1016/j.dt.2019.08.012
    [29] MUNIANDY K, ARIFF Z M, BAKAR A A. Digital image correlation utilization in measuring displacement and strain during plastic film blowing process: a feasibility study [J]. Measurement, 2019, 136: 487–500. doi: 10.1016/j.measurement.2018.12.093
    [30] MOGILYUK Z, PROKOPIEV V. General theory of vibroacoustic simulation of blast resistance of the bearing building constructions [J]. E3S Web of Conferences, 2020, 217: 01009. doi: 10.1051/e3sconf/202021701009
    [31] 周保顺, 张立恒, 王少龙, 等. TNT炸药爆炸冲击波的数值模拟与实验研究 [J]. 弹箭与制导学报, 2010, 30(3): 88–90. doi: 10.3969/j.issn.1673-9728.2010.03.025

    ZHOU B S, ZHANG L H, WANG S L, et al. Numerical simulation and experimental research on TNT explosion shock wave [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2010, 30(3): 88–90. doi: 10.3969/j.issn.1673-9728.2010.03.025
    [32] DUA A, BRAIMAH A, KUMAR M. Experimental and numerical investigation of rectangular reinforced concrete columns under contact explosion effects [J]. Engineering Structures, 2020, 205: 109891. doi: 10.1016/j.engstruct.2019.109891
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  825
  • HTML全文浏览量:  469
  • PDF下载量:  56
出版历程
  • 收稿日期:  2021-04-01
  • 修回日期:  2021-04-19

目录

    /

    返回文章
    返回