固溶温度对TB6钛合金动态力学性能和微观组织的影响

张昭 郭保桥 冉春 陈稳 陈鹏万

张昭, 郭保桥, 冉春, 陈稳, 陈鹏万. 固溶温度对TB6钛合金动态力学性能和微观组织的影响[J]. 高压物理学报, 2021, 35(6): 064104. doi: 10.11858/gywlxb.20210762
引用本文: 张昭, 郭保桥, 冉春, 陈稳, 陈鹏万. 固溶温度对TB6钛合金动态力学性能和微观组织的影响[J]. 高压物理学报, 2021, 35(6): 064104. doi: 10.11858/gywlxb.20210762
ZHANG Zhao, GUO Baoqiao, RAN Chun, CHEN Wen, CHEN Pengwan. Effect of Solution Temperature on Dynamic Mechanical Properties and Microstructure of TB6 Titanium Alloy[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 064104. doi: 10.11858/gywlxb.20210762
Citation: ZHANG Zhao, GUO Baoqiao, RAN Chun, CHEN Wen, CHEN Pengwan. Effect of Solution Temperature on Dynamic Mechanical Properties and Microstructure of TB6 Titanium Alloy[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 064104. doi: 10.11858/gywlxb.20210762

固溶温度对TB6钛合金动态力学性能和微观组织的影响

doi: 10.11858/gywlxb.20210762
基金项目: 国家自然科学基金(12072038)
详细信息
    作者简介:

    张 昭(1977-),男,硕士研究生,主要从事钛合金动态力学行为研究. E-mail:bitzhangzhao@163.com

    通讯作者:

    郭保桥(1976-),男,博士,副教授,主要从事实验力学、冲击动力学研究. E-mail:baoqiao_guo@bit.edu.cn

  • 中图分类号: O347.3

Effect of Solution Temperature on Dynamic Mechanical Properties and Microstructure of TB6 Titanium Alloy

  • 摘要: 研究了固溶温度对近β相TB6钛合金动态力学性能和微观组织的影响。以分离式霍普金森压杆为加载手段,对固溶处理前后的TB6钛合金进行了动态压缩试验。结果表明:固溶处理前后TB6钛合金都具有应变率强化效应,压缩破坏形式为典型的剪切破坏;TB6钛合金由应变硬化效应转变为应变软化效应的固溶温度为700~750 ℃。光学显微镜观测、X射线衍射和扫描电镜表征结果表明:700 ℃固溶处理后,TB6钛合金中的初生α相部分溶解,强度下降;750 ℃及以上固溶处理后,初生α相全部转化为β相,β晶粒长大,强度提升,但塑性显著降低。

     

  • 图  固溶处理工艺流程

    Figure  1.  Flow chart of solution process

    图  SHPB压杆装置示意图

    Figure  2.  Schematic of a SHPB set-up

    图  动态压缩试样宏观形貌

    Figure  3.  Typical macro-morphologies after dynamic compression

    图  不同应变率下的真应力-真应变曲线(固溶温度为700 ℃)

    Figure  4.  True stress versus true strain at different strain rates (at 700 ℃ solution)

    图  不同处理后的试样第一次剪切破环时的真应力-塑性应变曲线

    Figure  5.  True stress versus plastic strain for the first shear fracture of the specimens treated at different temperatures

    图  不同固溶温度处理后试样的屈服应力-应变率曲线

    Figure  6.  Yield stress versus strain rate of specimens treated at different solution temperatures

    图  1100 s−1时不同固溶温度处理后的真应力-真应变曲线

    Figure  7.  True stress versus true strain of specimens treated at different temperatures loading at 1100 s−1 strain rate

    图  不同固溶温度条件下材料的显微组织

    Figure  8.  Microstructures of specimens treated at different solution temperatures

    图  不同固溶温度条件下试样的XRD谱

    Figure  9.  XRD patterns of specimens treated at different solution temperatures

    图  10  不同温度固溶处理后试样的断面形貌

    Figure  10.  Cross-section morphologies of specimens treated at different solution temperatures

    表  1  TB6钛合金的化学成分(质量分数)[19]

    Table  1.   Chemical compositions of TB6 alloy (mass fraction)[19] % 

    HONFeAlVTi
    0.010.030.031.932.9310.13Rest
    下载: 导出CSV

    表  2  试样第一次破坏时的力学性能指标

    Table  2.   Mechanical performance of specimens for the first shear fracture

    Temperature/℃Maximum plastic strain Yield stress
    Value Ratio/% Value/MPa Ratio/%
    Untreated0.18171115
    7000.1660 −8.641010−9.42
    7500.0621−65.82127514.35
    8000.0254−86.02132318.65
    下载: 导出CSV
  • [1] BOYER R R. An overview on the use of titanium in the aerospace industry [J]. Materials Science and Engineering: A, 1996, 213(1/2): 103–114. doi: 10.1016/0921-5093(96)10233-1
    [2] LEE S W, PARK C H, HONG J K, et al. Effect of solution treatment and aging conditions on tensile properties of Ti-Al-Fe-Si alloy [J]. Materials Science and Engineering: A, 2017, 697: 158–166. doi: 10.1016/j.msea.2017.05.022
    [3] 母果路, 廖强, 王兴, 等. 固溶加时效处理对Gr.36钛合金棒材组织及性能的影响 [J]. 钛工业进展, 2017, 34(2): 28–32.

    MU G L, LIAO Q, WANG X, et al. Effect of solution and aging treatment on microstructures and mechanical properties of Gr.36 titanium alloy bars [J]. Titanium Industry Progress, 2017, 34(2): 28–32.
    [4] RAN C, ZHOU Q, CHEN P W, et al. Comparative experimental study of the dynamic properties and adiabatic shear susceptibility of titanium alloys [J]. European Journal of Mechanics-A/Solids, 2021, 85: 104137. doi: 10.1016/j.euromechsol.2020.104137
    [5] RAN C, SHENG Z M, CHEN P W, et al. Effect of microstructure on the mechanical properties of Ti-5Al-5Mo-5V-1Cr-1Fe alloy [J]. Materials Science and Engineering: A, 2020, 773: 138728. doi: 10.1016/j.msea.2019.138728
    [6] RAN C, CHEN P W, LI L, et al. High-strain-rate plastic deformation and fracture behaviour of Ti-5Al-5Mo-5V-1Cr-1Fe titanium alloy at room temperature [J]. Mechanics of Materials, 2018, 116: 3–10. doi: 10.1016/j.mechmat.2017.08.007
    [7] 冉春, 陈鹏万, 李玲, 等. 中高应变率条件下TC18钛合金动态力学行为的实验研究 [J]. 兵工学报, 2017, 38(9): 1723–1728. doi: 10.3969/j.issn.1000-1093.2017.09.008

    RAN C, CHEN P W, LI L, et al. Experimental research on dynamic mechanical behavior of TC18 titanium alloy under medium and high strain rates [J]. Acta Armamentarii, 2017, 38(9): 1723–1728. doi: 10.3969/j.issn.1000-1093.2017.09.008
    [8] 邹学韬, 张晓晴, 姚小虎. 压剪载荷作用下TB6钛合金的动态力学性能 [J]. 高压物理学报, 2019, 33(2): 024206. doi: 10.11858/gywlxb.20190713

    ZOU X T, ZHANG X Q, YAO X H. Dynamic behavior of TB6 titanium alloy under shear-compression loading [J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 024206. doi: 10.11858/gywlxb.20190713
    [9] 庄仕明, 丰树平, 王春彦, 等. 高应变率下TC4及TC9钛合金的动态断裂 [J]. 高压物理学报, 1995, 9(2): 96–106. doi: 10.11858/gywlxb.1995.02.003

    ZHUANG S M, FENG S P, WANG C Y, et al. Dynamic fracture of TC4 and TC9 titanium alloys at high strain rates [J]. Chinese Journal of High Pressure Physics, 1995, 9(2): 96–106. doi: 10.11858/gywlxb.1995.02.003
    [10] NASERI R, CASILLAS G, MITCHELL D R G, et al. Effect of strain on microstructural development during uniaxial compression of metastable beta Ti-10V-2Fe-3Al alloy [J]. Materials Science and Engineering: A, 2021, 804: 140720. doi: 10.1016/j.msea.2020.140720
    [11] QI L C, QIAO X L, HUANG L J, et al. Effect of structural stability on the stress induced martensitic transformation in Ti-10V-2Fe-3Al alloy [J]. Materials Science and Engineering: A, 2019, 756: 381–388. doi: 10.1016/j.msea.2019.04.058
    [12] QUAN G Z, LV W Q, LIANG J T, et al. Evaluation of the hot workability corresponding to complex deformation mechanism evolution for Ti-10V-2Fe-3Al alloy in a wide condition range [J]. Journal of Materials Processing Technology, 2015, 221: 66–79. doi: 10.1016/j.jmatprotec.2015.02.002
    [13] SONG B, CHEN Y, XIAO W L, et al. Formation of intermediate phases and their influences on the microstructure of high strength near-β titanium alloy [J]. Materials Science and Engineering: A, 2020, 793: 139886. doi: 10.1016/j.msea.2020.139886
    [14] MA X K, CHEN Z, XIAO L, et al. Stress-induced martensitic transformation in a β-solution treated Ti-10V-2Fe-3Al alloy during compressive deformation [J]. Materials Science and Engineering: A, 2021, 801: 140404. doi: 10.1016/j.msea.2020.140404
    [15] CHEN W, YAO S S, LIU R L, et al. Enhanced grain refining efficiency assisted by martensitic transformation in metastable β-titanium alloy [J]. Rare Metal Materials and Engineering, 2015, 44(7): 1601–1606. doi: 10.1016/S1875-5372(15)30100-4
    [16] 张俊喜, 易湘斌, 沈建成, 等. 固溶和工作温度对TC21钛合金动态压缩性能和绝热剪切敏感性的影响 [J]. 材料导报, 2020, 34(24): 24092–24096. doi: 10.11896/cldb.19070199

    ZHANG J X, YI X B, SHEN J C, et al. Influence of solution and ambient temperature on dynamic compression mechanical properties and adiabatic shear sensitivity of TC21 titanium alloy [J]. Materials Reports, 2020, 34(24): 24092–24096. doi: 10.11896/cldb.19070199
    [17] LI C L, ZOU L N, FU Y Y, et al. Effect of heat treatments on microstructure and property of a high strength/toughness Ti-8V-1.5Mo-2Fe-3Al alloy [J]. Materials Science and Engineering: A, 2014, 616: 207–213. doi: 10.1016/j.msea.2014.08.025
    [18] 鹿超龙, 杨文成, 权国政, 等. 固溶+时效处理对TB6钛合金组织的影响 [J]. 热加工工艺, 2020: 1–4. doi: 10.14158/j.cnki.1001-3814.20181298

    LU C L, YANG W C, QUAN G Z, et al. Effect of solution and aging treatment on microstructure of TB6 titanium alloy [J]. Hot Working Technology, 2020: 1–4. doi: 10.14158/j.cnki.1001-3814.20181298
    [19] 易湘斌, 芮执元, 贺瑗, 等. 不同冷却润滑条件下TB6钛合金高速铣削切屑形态研究 [J]. 制造技术与机床, 2019(7): 85–88. doi: 10.19287/j.cnki.1005-2402.2019.07.016

    YI X B, RUI Z Y, HE Y, et al. Study on chip morphology of TB6 titanium alloy in high speed milling under different cooling and lubrication conditions [J]. Manufacturing Technology and Machine Tool, 2019(7): 85–88. doi: 10.19287/j.cnki.1005-2402.2019.07.016
    [20] 王礼立, 余同希, 李永池. 冲击动力学进展[M]. 合肥: 中国科学技术大学出版社, 1992.

    WANG L L, YU T X, LI Y C. Progress in impact dynamics [M]. Hefei: University of Science and Technology of China Press, 1992.
    [21] 叶萃. TB6钛合金室温塑性机制研究[D]. 贵阳: 贵州大学, 2015.

    YE C. Study on room temperature plasticity mechanism of TB6 titanium alloy [D]. Guiyang: Guizhou University, 2015.
    [22] BAI Y L, XUE Q, XU Y B, et al. Characteristics and microstructure in the evolution of shear localization in Ti-6A1-4V alloy [J]. Mechanics of Materials, 1994, 17(2/3): 155–164. doi: 10.1016/0167-6636(94)90056-6
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  626
  • HTML全文浏览量:  271
  • PDF下载量:  27
出版历程
  • 收稿日期:  2021-03-30
  • 修回日期:  2021-04-09

目录

    /

    返回文章
    返回