横向爆炸载荷下泡沫铝填充管的动态响应

张春云 刘志芳

张春云, 刘志芳. 横向爆炸载荷下泡沫铝填充管的动态响应[J]. 高压物理学报, 2021, 35(6): 064201. doi: 10.11858/gywlxb.20210752
引用本文: 张春云, 刘志芳. 横向爆炸载荷下泡沫铝填充管的动态响应[J]. 高压物理学报, 2021, 35(6): 064201. doi: 10.11858/gywlxb.20210752
ZHANG Chunyun, LIU Zhifang. Dynamic Response of Aluminum Foam Filled Pipes under Lateral Explosive Load[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 064201. doi: 10.11858/gywlxb.20210752
Citation: ZHANG Chunyun, LIU Zhifang. Dynamic Response of Aluminum Foam Filled Pipes under Lateral Explosive Load[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 064201. doi: 10.11858/gywlxb.20210752

横向爆炸载荷下泡沫铝填充管的动态响应

doi: 10.11858/gywlxb.20210752
基金项目: 国家自然科学基金(11772216)
详细信息
    作者简介:

    张春云(1993-),男,硕士研究生,主要从事冲击动力学研究. E-mail:1748867532@qq.com

    通讯作者:

    刘志芳(1971-),女,博士,副教授,主要从事冲击动力学研究. E-mail:liuzhifang@tyut.edu.cn

  • 中图分类号: O347.3

Dynamic Response of Aluminum Foam Filled Pipes under Lateral Explosive Load

  • 摘要: 采用数值模拟与理论分析相结合的方法,研究横向爆炸载荷下泡沫铝填充管的动态响应。利用有限元软件ABAQUS/EXPLICIT对横向爆炸载荷下泡沫铝填充管的塑性变形进行了数值模拟研究,分析了泡沫铝的相对密度、外管的直径与壁厚等因素对结构动态响应的影响。基于理想刚塑性地基梁模型,结合模态分析法,建立了预测横向爆炸载荷下泡沫铝填充管跨中挠度的理论分析模型,并进行了无量纲分析,给出了跨中无量纲挠度随无量纲冲量的变化规律。泡沫铝填充管跨中挠度的理论预测与数值模拟结果的误差在20%以内,表明所建立的理论分析模型合理可行。泡沫铝相对密度对横向爆炸载荷下填充管的跨中挠度有较大的影响,随着泡沫铝相对密度的增大,填充管跨中挠度减小。随着外管直径与壁厚的增大,跨中挠度减小。理论分析中,假设的两种模态函数对填充管跨中挠度的影响较小。

     

  • 图  爆炸载荷下填充管的几何模型

    Figure  1.  Geometry of the tube filling with aluminum foam under blast loading

    图  网格尺寸对跨中挠度的影响

    Figure  2.  Influence of mesh size on the deflection of the mid-span

    图  爆炸载荷下填充管刚塑性地基梁

    Figure  3.  Rigid-plastic beam-on-foundation of the tube filling with aluminum foam under blast loading

    图  无量纲挠度-无量纲量λ曲线

    Figure  4.  Curves of non-dimensional deflection vs. the non-dimensional quantity λ

    图  无量纲挠度-无量纲量η曲线

    Figure  5.  Curves of non-dimensional deflection vs. the non-dimensional quantity η

    图  不同无量纲冲量下无量纲挠度的理论解与数值模拟结果的对比

    Figure  6.  Comparison of the non-dimensional deflection of the theoretical results and numerical results under different value of In

    图  无量纲挠度-无量纲冲量曲线

    Figure  7.  Curves of non-dimensional deflection vs. the non-dimensional impulse

    图  爆炸载荷峰值-衰减常数曲线

    Figure  8.  Curves of peak explosive load ${p_0}$ vs. characteristic time constant $\tau $

    表  1  泡沫铝参数[17]

    Table  1.   The parameters of aluminum foam[17]

    Relative density/%Density/(kg·m−3)$\mu $${\sigma {_ {\rm{s}}} }$/MPaE/GPa
    8220.80.332.810.9
    12331.20.334.521.9
    20552.00.337.995.7
    下载: 导出CSV

    表  2  实心泡沫铝填充管跨中挠度的模态解与数值模拟结果对比

    Table  2.   Comparison of mid-span deflection of foamed aluminum filled tubes of modal solutions and numerical simulation results

    d1/mmh/mmRelative density/%Wtheor/mmWsim/mm$\dfrac{W{_{ {\rm{sim} } } }-W{_{ {\rm{theor} } } } }{W{_{ {\rm{theor} } } } } \Big/\text{%}$
    760.7 83.03.1 3
    121.61.7 6
    200.70.814
    0.8 82.82.9 4
    121.41.57
    200.60.717
    890.7 82.52.7 8
    121.31.4 8
    200.50.620
    0.8 82.32.30
    121.21.20
    200.50.50
    下载: 导出CSV

    表  3  两种模态函数跨中挠度的对比

    Table  3.   Comparison of mid-span deflection corresponding to two modal functions

    d1/mmh/mmRelative density/% W/mmRelative error/%
    ${ {\phi^*{_2} }(x)=1-2x/L}$${\phi^*{_2}(x)={\rm{cos} }(\text{π}x/L)}$
    760.7 83.02.8−7
    121.61.4−13
    200.70.6−14
    0.8 82.82.6−7
    121.41.4 0
    200.60.6 0
    890.782.52.4−4
    121.31.2−8
    200.50.5 0
    0.8 82.32.2−4
    121.21.1−8
    200.50.5 0
    下载: 导出CSV
  • [1] HENRYCH J. The dynamics of explosion and its use [M]. New York: Elsevier Scientific Publishing Company, 1979.
    [2] WIERZBICKI T, HOO F, MICHELLE S. Damage assessment of cylinders due to impact and explosive loading [J]. International Journal of Impact Engineering, 1993, 13(2): 215–241. doi: 10.1016/0734-743X(93)90094-N
    [3] 于博丽, 冯根柱, 李世强, 等. 横向爆炸载荷下薄壁圆管的动态响应 [J]. 爆炸与冲击, 2019, 39(10): 103101. doi: 10.11883/bzycj-2018-0295

    YU B L, FENG G Z, LI S Q, et al. Dynamic response of thin-wall circular tubes under transverse blast loading [J]. Explosion and Shock Waves, 2019, 39(10): 103101. doi: 10.11883/bzycj-2018-0295
    [4] LI S Q, YU B L, KARAGIOZOVA D, et al. Experimental, numerical, and theoretical studies of the response of short cylindrical stainless steel tubes under lateral air blast loading [J]. International Journal of Impact Engineering, 2019, 124: 48–60. doi: 10.1016/j.ijimpeng.2018.10.004
    [5] BROCHARD K, LE SOURNE H, BARRAS G. Extension of the string-on-foundation method to study the shock wave response of an immersed cylinder [J]. International Journal of Impact Engineering, 2018, 117: 138–152. doi: 10.1016/j.ijimpeng.2018.03.007
    [6] YUEN S C K, NURICK G N, BRINCKMANN H B, et al. Response of cylindrical shells to lateral blast load [J]. International Journal of Protective Structures, 2013, 4(3): 209–230. doi: 10.1260/2041-4196.4.3.209
    [7] KARAGIOZOVA D, YU T X, LU G, et al. Response of a circular metallic hollow beam to an impulsive loading [J]. Thin-Walled Structures, 2014, 80: 80–90. doi: 10.1016/j.tws.2014.02.021
    [8] WALTERS R M, JONES N. An approximate theoretical study of the dynamic plastic behavior of shells [J]. International Journal of Non-Linear Mechanics, 1972, 7(3): 255–273. doi: 10.1016/0020-7462(72)90049-2
    [9] WANG Y, QIAN X D, LIEW J Y R, et al. Impact of cement composite filled steel tubes: an experimental, numerical and theoretical treatise [J]. Thin-Walled Structures, 2015, 87: 76–88. doi: 10.1016/j.tws.2014.11.007
    [10] HALL I W, GUDEN M, CLAAR T D. Transverse and longitudinal crushing of aluminum-foam filled tubes [J]. Scripta Materialia, 2002, 46(7): 513–518. doi: 10.1016/S1359-6462(02)00024-6
    [11] WANG H W, WU C Q, ZHANG F R, et al. Experimental study of large-sized concrete filled steel tube columns under blast load [J]. Construction and Building Materials, 2017, 134: 131–141. doi: 10.1016/j.conbuildmat.2016.12.096
    [12] ZHANG F R, WU C Q, WANG H W, et al. Numerical simulation of concrete filled steel tube columns against blast loads [J]. Thin-Walled Structures, 2015, 92: 82–92. doi: 10.1016/j.tws.2015.02.020
    [13] YOUSUF M, UY B, TAO Z, et al. Transverse impact resistance of hollow and concrete filled stainless steel columns [J]. Journal of Constructional Steel Research, 2013, 82: 177–189. doi: 10.1016/j.jcsr.2013.01.005
    [14] 邓旭辉, 王达锋. 近爆作用下中空夹层超高性能钢管混凝土柱的抗爆性能 [J]. 高压物理学报, 2020, 34(6): 065201.

    DENG X H, WANG D F. Anti-blast performance of ultra-high performance concrete-filled double steel tubes under close-in blast loading [J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 065201.
    [15] COLE R H, WELLER R. Underwater explosions [J]. Physics Today, 1948, 1(6): 35. doi: 10.1063/1.3066176
    [16] KARAGIOZOVA D, NURICK G N, LANGDON G S. Behaviour of sandwich panels subject to intense air blasts–Part 2: numerical simulation [J]. Composite Structures, 2009, 91(4): 442–450. doi: 10.1016/j.compstruct.2009.04.010
    [17] 刘志芳, 王军, 秦庆华. 横向冲击载荷下泡沫铝夹芯双圆管的吸能研究 [J]. 兵工学报, 2017, 38(11): 2259–2267. doi: 10.3969/j.issn.1000-1093.2017.11.024

    LIU Z F, WANG J, QIN Q H. Research on energy absorption of aluminum foam-filled double circular tubes under lateral impact loadings [J]. Acta Armamentarii, 2017, 38(11): 2259–2267. doi: 10.3969/j.issn.1000-1093.2017.11.024
    [18] 余同希, 华云龙. 结构塑性动力学引论[M]. 合肥: 中国科学技术大学出版社, 1994: 88–89.

    YU T X, HUA Y L. Introduction to structural plasticity dynamics [M]. Hefei: University of Science and Technology of China Press, 1994: 88–89.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  677
  • HTML全文浏览量:  422
  • PDF下载量:  34
出版历程
  • 收稿日期:  2021-03-23
  • 修回日期:  2021-04-16

目录

    /

    返回文章
    返回