RDX塑性炸药的爆电耦合效应

刘鹏 简昊天 张秋 朱朋 沈瑞琪

刘鹏, 简昊天, 张秋, 朱朋, 沈瑞琪. RDX塑性炸药的爆电耦合效应[J]. 高压物理学报, 2021, 35(6): 065201. doi: 10.11858/gywlxb.20210744
引用本文: 刘鹏, 简昊天, 张秋, 朱朋, 沈瑞琪. RDX塑性炸药的爆电耦合效应[J]. 高压物理学报, 2021, 35(6): 065201. doi: 10.11858/gywlxb.20210744
LIU Peng, JIAN Haotian, ZHANG Qiu, ZHU Peng, SHEN Ruiqi. Explosion-Electricity Coupling Effect of RDX Plastic Explosive[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 065201. doi: 10.11858/gywlxb.20210744
Citation: LIU Peng, JIAN Haotian, ZHANG Qiu, ZHU Peng, SHEN Ruiqi. Explosion-Electricity Coupling Effect of RDX Plastic Explosive[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 065201. doi: 10.11858/gywlxb.20210744

RDX塑性炸药的爆电耦合效应

doi: 10.11858/gywlxb.20210744
详细信息
    作者简介:

    刘 鹏(1996-),男,硕士研究生,主要从事脉冲功率与含能材料研究.E-mail:liupeng303@njust.edu.cn

    通讯作者:

    朱 朋(1978-),男,博士,副研究员,博士生导师,主要从事先进火工品、微流控和爆电耦合研究.E-mail:zhupeng@njust.edu.cn

  • 中图分类号: O398; TJ410

Explosion-Electricity Coupling Effect of RDX Plastic Explosive

  • 摘要: 为了寻求一种新的提高炸药输出性能的途径,对外界电能与炸药自身爆炸能量耦合进行了研究,设计、组建了爆电耦合试验装置,选取平板RDX塑性炸药为研究对象,以爆速仪测量的爆速和光子多普勒测速技术测量的爆压作为爆电耦合增益的主要表征参量,研究爆电耦合对炸药输出性能的影响。通过分析炸药爆电耦合过程中的电学性能,定性地分析了爆电耦合效应的反应历程,并提出了RDX塑性炸药爆电耦合效应的可能作用机理。研究结果表明:爆电耦合效应可以有效地将电能沉积到炸药爆炸的反应区中,在保证其余条件相同的前提下,爆电耦合效应对RDX塑性炸药的爆速、von Neumann峰值压力和Chapman-Jouguet压力均有一定的提升。通过对爆电耦合的理论和试验研究,提出了一种增强炸药输出性能的方式,对炸药性能提升研究具有一定的理论价值和指导意义。

     

  • 图  RDX塑性炸药

    Figure  1.  RDX plastic explosive

    图  爆电耦合试验示意图

    Figure  2.  Schematic diagram of the EEC test

    图  试验工装

    Figure  3.  Test device

    图  短路放电电流曲线

    Figure  4.  Current histories of short-circuit discharge

    图  PDV原理示意图

    Figure  5.  Schematic diagram of PDV principle

    图  界面粒子速度测量示意图

    Figure  6.  Schematic diagram of the interface particle velocity measurement

    图  完整试验过程示意图

    Figure  7.  Complete schematic diagram of the test process

    图  爆电耦合电流和电压曲线

    Figure  8.  Current and voltage histories of EEC

    图  修正后的粒子速度-时间曲线

    Figure  9.  Modified interface particle velocity-time curves

    图  10  速度-时间曲线的一阶微分

    Figure  10.  First-order differential diagrams of the velocity-time curve

    表  1  爆电耦合下塑性炸药的爆速增益

    Table  1.   Detonation velocity gain of the plastic explosive under EEC

    $\;\rho $0/(g·cm−3)Thickness/mmv0/(m·s−1)vEEC/(m·s−1)Increment/(m·s−1)Percentage/%
    1.303.00636465912273.57
    下载: 导出CSV

    表  2  塑性炸药爆电耦合效应爆压增益情况

    Table  2.   Detonation pressure gain of the plastic explosive under EEC

    Loading conditionsuVN/(m·s−1)uC-J/(m·s−1)pVN/GPapC-J/GPa$\tau $/μsa/mm$\delta_{p_{\rm{VN}}} $/%$\delta_{p_{\text{C-J}}} $/%
    No power1990.70967.6328.9812.320.11340.5810.282.19
    Power up2135.57976.1131.9612.590.11380.61
    下载: 导出CSV
  • [1] TOTON E T. High explosive detonation and electromagnetic interaction: NSWC TR 79-205 [R]. White Oak Detachment, NH: Naval Surface Weapons Center, 1979.
    [2] LEE J, KUK J H, KIM C H, et al. Enhancement of detonation properties by electric energy input [C]//FURNISH M D, CHHABILDAS L C, HIXSON R S. Shock Compression of Condensed Matter-1999. New York: AIP, 2000: 865−868.
    [3] PIEHLER T, HUMMER C, BENJAMIN R, et al. Preliminary study of coupling electromagnetic energy to primasheet-1000 explosive: ARL-TR-6446 [R]. Aberdeen, MD: Army Research Laboratory, 2013.
    [4] VALENZUELA A R, RODRIGUEZ G, CLARKE S A, et al. Photonic doppler velocimetry of laser-ablated ultrathin metals [J]. Review of Scientific Instruments, 2007, 78(1): 22.
    [5] 裴红波, 黄文斌, 覃锦程. 基于多普勒测速技术的JB-9014炸药反应区结构研究 [J]. 爆炸与冲击, 2018, 38(3): 485–490.

    PEI H B, HUANG W B, QIN J C. Reaction zone structure of JB-9014 explosive measured by PDV [J]. Explosion and Shock Waves, 2018, 38(3): 485–490.
    [6] 杨舒棋, 张旭, 彭文杨, 等. 钝感炸药冲击起爆反应过程的PDV技术 [J]. 高压物理学报, 2020, 34(2): 023402. doi: 10.11858/gywlxb.20190856

    YANG S Q, ZHANG X, PENG W Y, et al. PDV technology of shock initiation reaction process of insensitive explosive [J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 023402. doi: 10.11858/gywlxb.20190856
    [7] 赵万广, 周显明, 李加波. LiF单晶的高压折射率及窗口速度的修正 [J]. 高压物理学报, 2014, 28(5): 571–576. doi: 10.11858/gywlxb.2014.05.010

    ZHAO W G, ZHOU X M, LI J B. Refractive index of LiF single crystal at high pressure and its window correction [J]. Chinese Journal of High Pressure Physics, 2014, 28(5): 571–576. doi: 10.11858/gywlxb.2014.05.010
    [8] 杨洋, 段卓平, 张连生. 两种DNAN基含铝炸药的爆轰性能 [J]. 含能材料, 2019, 27(8): 679–684. doi: 10.11943/CJEM2018327

    YANG Y, DUAN Z P, ZHANG L S. Detonation performance of two DNAN based aluminized explosives [J]. Chinese Journal of Energetic Materials, 2019, 27(8): 679–684. doi: 10.11943/CJEM2018327
    [9] 刘俊明, 张旭, 裴红波. JB-9014钝感炸药冲击Hugoniot关系测量 [J]. 高压物理学报, 2018, 32(3): 45–51.

    LIU J M, ZHANG X, PEI H B. Measurement of Hugoniot relation for JB-9014 insensitive explosive [J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 45–51.
    [10] 张涛, 谷岩, 赵继波. JBO-9021炸药的化学反应区宽度 [J]. 爆炸与冲击, 2017, 37(3): 415–421. doi: 10.11883/1001-1455(2017)03-0415-07

    ZHANG T, GU Y, ZHAO J B. Chemical reaction zone length of JBO-9021 [J]. Explosion and Shock Waves, 2017, 37(3): 415–421. doi: 10.11883/1001-1455(2017)03-0415-07
    [11] 彭其先, 马如超, 刘俊. VISAR测试技术研究炸药反应区厚度 [J]. 流体力学实验与测量, 2003(1): 43–45.

    PENG Q X, MA R C, LIU J. VISAR used in explosive reaction zone measurement [J]. Experiments and Measurements in Fluid Mechanics, 2003(1): 43–45.
    [12] 任福德. 几种炸药在外电场中感度的理论研究[D]. 太原: 中北大学, 2016: 106−122.

    REN F D. Theoretical insight into the explosive sensitivity of several explosive in external electric field [D]. Taiyuan: North University of China, 2016: 106−122.
    [13] 韩刚, 苟瑞君, 张树海, 等. 外电场影响HMX/MDNI复合物感度的理论研究 [J]. 含能材料, 2017, 25(11): 939–945. doi: 10.11943/j.issn.1006-9941.2017.11.009

    HAN G, GOU R J, ZHANG S H, et al. Theoretical investigation into the effects of external electric fields upon the sensitivity of HMX/MDNI complex [J]. Chinese Journal of Energetic Materials, 2017, 25(11): 939–945. doi: 10.11943/j.issn.1006-9941.2017.11.009
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  701
  • HTML全文浏览量:  418
  • PDF下载量:  26
出版历程
  • 收稿日期:  2021-03-15
  • 修回日期:  2021-04-02

目录

    /

    返回文章
    返回