二维材料及其范德瓦尔斯异质结的高压响应研究进展

裴胜海 邓晴阳 王曾晖 夏娟

裴胜海, 邓晴阳, 王曾晖, 夏娟. 二维材料及其范德瓦尔斯异质结的高压响应研究进展[J]. 高压物理学报, 2021, 35(3): 030101. doi: 10.11858/gywlxb.20210741
引用本文: 裴胜海, 邓晴阳, 王曾晖, 夏娟. 二维材料及其范德瓦尔斯异质结的高压响应研究进展[J]. 高压物理学报, 2021, 35(3): 030101. doi: 10.11858/gywlxb.20210741
PEI Shenghai, DENG Qingyang, WANG Zenghui, XIA Juan. Pressure Engineering in Two-Dimensional Materials and vdWs Heterostructures[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 030101. doi: 10.11858/gywlxb.20210741
Citation: PEI Shenghai, DENG Qingyang, WANG Zenghui, XIA Juan. Pressure Engineering in Two-Dimensional Materials and vdWs Heterostructures[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 030101. doi: 10.11858/gywlxb.20210741

二维材料及其范德瓦尔斯异质结的高压响应研究进展

doi: 10.11858/gywlxb.20210741
基金项目: 国家重点研发计划(2019YFE0120300,2018YFE0115500);国家自然科学基金(62004026,61774029,62004032);四川省科技厅应用基础研究计划(2021YJ0517,21CXTD0088,2019YFSY0007,2019JDTD0006)
详细信息
    作者简介:

    裴胜海(1989-),男,博士,博士后,主要从事二维材料的高压拉曼光谱研究. E-mail:peish0000@gmail.com

    邓晴阳(1998-),男,硕士研究生,主要从事新型低维纳米材料器件研究. E-mail:deng_qingyang@std.uestc.edu.cn

    通讯作者:

    夏 娟(1994-),女,博士,研究员,主要从事新型二维半导体材料的电子和光电性能研究. E-mail:juanxia@uestc.edu.cn

  • 中图分类号: O521.2

Pressure Engineering in Two-Dimensional Materials and vdWs Heterostructures

  • 摘要: 高压技术是一种高效、连续、可逆的调控材料结构、电学、光学等物理特性的手段,因此利用压强工程在材料中实现超导态、制备超硬材料等成为高压领域的研究热点。不同于传统的三维体相材料,二维材料及其异质结中独特的层间耦合作用使其具有许多不同于传统材料的物理特性,且这些物理特性极易受到外场影响和调控,使得高压物理成功地拓展到低维材料领域。本文以石墨烯、黑磷、六方氮化硼和过渡金属二硫族化合物等几种典型的二维材料及其异质结为例,概述了二维材料及异质结在高压调控下的结构、电学、声子动力学、光学等方面的响应,并简要讨论这些高压调控下的二维材料在未来电子、光电器件等领域应用的潜力。

     

  • 图  石墨烯在高压下的结构和电学响应:(a) DAC压强工程示意图及高压诱导下石墨烯转变为h-金刚石结构的示意图[25];(b) 通过高压原位拉曼光谱研究少层石墨烯在常压到51.7 GPa压强范围的结构响应[22];(c) 3层石墨烯在室温下的电阻率-压强曲线[11];(d) 不同层数的石墨烯G拉曼峰随压强变化的线性频移系数($\partial {\omega _{\rm{G}}}/\partial p$),其中红方块、蓝圆点和绿三角分别表示传压介质为醇、氩气和氮气[28];(e) 双层1.27°转角石墨烯在常压下是金属态,高压下转变为超导态的现象[30]

    Figure  1.  Pressure engineering in Graphene: (a) illustration of DAC high-pressure setup and pressure induced phase transition process from trilayer graphene to h-diamond structure[25]; (b) evolution of Raman spectrum in few-layer graphene, from ambient pressure to 51.7 GPa, showing reversible shift during pressurization and depressurization[22]; (c) resistance vs. pressure of trilayer graphene measured at room temperature[11]; (d) linear pressure coefficients ($\partial {\omega _{\rm{G}}}/\partial p$) of graphene G peak (frequency) obtained in alcohol (red squares), argon (blue circles), and nitrogen (green triangle) as a function of thickness[28]; (e) pressure induced superconductivity in 1.27° twisted bilayer graphene[30]

    图  黑磷在高压下的结构和电学响应:(a) 用高压原位拉曼光谱研究不同层数的黑磷随压强变化的$A^1_{{\rm g}} $B2g$A^2_{{\rm g}} $振动模式的演化[35];(b) 体相黑磷中随压强变化的$A^1_{{\rm g}} $B2g$A^2_{{\rm g}} $拉曼模式的半峰全宽(FWHM)演化,虚线表示半导体到拓扑绝缘体相变压强点[34];(c) 少层黑磷在高压下从正常绝缘体(NI)转变为二维拓扑狄拉克半金属态(TDSM),及不同层数的黑磷的拓扑相变图,pCpT分别为电子相变点和热稳定点[39]

    Figure  2.  Pressure engineering in black phosphorus (BP): (a) the evolution of $A^1_{{\rm g}} $, B2g and $A^2_{{\rm g}} $ modes in monolayer, bilayer, trilayer, and bulk BP samples as a function of pressure[35]; (b) the evolution of full width at half maximum (FWHM) of $A^1_{{\rm g}} $, B2g and $A^2_{{\rm g}} $ modes in bulk BP as a function of pressure[34], (c) top: evolution of band structure in few-layer BP from normal insulator (NI) to a two dimensional topological Dirac semimetal (TDSM) at high pressure, bottom: the pressure-thickness phase diagram of BP, where pC and pT are the critical pressures for electronic phase transition and upper limit of thermodynamic stability respectively[39]

    图  h-BN在高压下的结构和光学响应:(a) h-BN在15 GPa下的XRD谱,表明其完成了从h-BN(P63/mmc)到w-BN(P63mc)的相转变,蓝线和黑线分别为入射方向平行和垂直DAC轴的数据[51];(b) h-BN在13 GPa、室温下转变为密堆w-BN的原子结构变化示意图[50];(c) 单层(上)和双层(下)h-BN的原子结构对应力的响应[56];(d)多层h-BN的缺陷PL峰随压强变化的响应[56]

    Figure  3.  Pressure engineering in hexagonal boron nitride (h-BN): (a) the XRD spectra of bulk h-BN at 15 GPa, collected parallel (blue)/perpendicular (black) to the DAC axis[51]; (b) atomic structure illustration showing phase transition process from h-BN (P63/mmc) to w-BN (P63mc) at around 13 GPa at room temperature[50]; (c) schematic diagram for the strain effect on monolayer (top) and bilayer (bottom) h-BN[56]; (d) evolution of defect-induced PL spectrum as a function of pressure in multi-layer h-BN[56]

    图  MoS2在高压下的结构、能带及电学响应:(a) MoX2的2Hc和2Ha原子结构侧视图,X代表S、Se和Te原子[61];(b) 单层、双层和3层MoS2的价带顶(VBM)的能量劈裂以及层间距随压强变化[70];(c) 2H-MoS2的压强-温度相图[71]

    Figure  4.  Pressure engineering in molybdenum dichalcogenides (MoX2): (a) schematic (side view) of 2Hc and 2Ha structures of MoX2, with X representing S, Se and Te[61]; (b) band splitting of VBM and interlayer distance vs. pressure for monolayer, bilayer, and trilayer MoS2[70]; (c) pressure-temperature phase diagram of bulk 2H-MoS2[71]

    图  不同对称性的TMDs在高压下的结构、能带及光学响应:(a) 不同层数的2H-MoS2中的拉曼振动模式A1g随压强变化[62];(b) 体相Td-WTe2的特征拉曼峰随压强的变化,激光入射方向平行于a[83];(c) 体相1T-ReS2和2H-MoS2的特征拉曼峰位随压强的变化[84];(d) 不同压强范围下双层MoS2的带间跃迁示意图[85]

    Figure  5.  Pressure engineering in transition metal dichalcogenides (TMDs) with different symmetries: (a) evolution of A1g Raman mode in MoS2 with different thickness, as functions of pressure[62]; (b) evolution of Raman spectrum in bulk Td-WTe2 with the incident laser illuminating along the a-axes[83]; (c) evolution of the featured Raman peaks in bulk ReS2 (Eg, Eg-like, Ag-like) and MoS2 (E1g, E2g, Ag), as functions of applied hydrostatic pressure[84]; (d) transition path selection rules of bilayer MoS2 in different pressure ranges[85]

    图  二维范德瓦尔斯异质结在高压下的结构、激子发光、电荷掺杂等响应:(a) WS2/MoS2异质结中$A_1\!\!\!\text{′} $E′振动模式的频率随压强增加的变化,及其与单层WS2和单层MoS2的对比[89];(b) 双层WSe2/MoSe2异质结的PL谱在高压下的响应(左),及第一性原理计算得到的电子能带结构随压强的变化(右)[10];(c) Graphene/MoS2异质结中石墨烯的狄拉克点移动及电荷转移诱导的载流子浓度变化[91];(d) 不同层数(1L、2L、3L)的石墨烯/h-BN异质结中的掺杂效率在STM针尖施加压强下的响应对比[92]

    Figure  6.  Pressure engineering in 2D vdWs heterostructures: (a) evolution of $A_1\!\!\!\text{′}$ and E′ vibration modes as a function of pressure[89]; (b) evolution of measured PL spectrum (left) and calculated electronic band structure (right) with pressure in WSe2/MoSe2 heterobilayers, from ambient pressure to 2.8 GPa[10]; (c) the relative shift of the Dirac point with respect to the Fermi level, together with charge-transfer-induced carrier concentration of graphene, as functions of hydrostatic pressure in graphene/MoS2 heterostructures[91]; (d) the relative charging efficiency in graphene/h-BN heterostructures with different number of graphene layers (1L, 2L, 3L), as functions of the applied tip force[92]

  • [1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5696): 666–669. doi: 10.1126/science.1102896
    [2] CHOW W L, YU P, LIU F C, et al. High mobility 2D palladium diselenide field-effect transistors with tunable Ambipolar characteristics [J]. Advanced Materials, 2017, 29(21): 1602969. doi: 10.1002/adma.201602969
    [3] BUNCH J S, VAN DER ZANDE A M, VERBRIDGE S S, et al. Electromechanical resonators from graphene sheets [J]. Science, 2007, 315(5811): 490–493. doi: 10.1126/science.1136836
    [4] NOVOSELOV K S, MISHCHENKO A, CARVALHO A, et al. 2D materials and van der Waals heterostructures [J]. Science, 2016, 353(6298): 9439. doi: 10.1126/science.aac9439
    [5] CAO Y, FATEMI V, FANG S A, et al. Unconventional superconductivity in magic-angle graphene superlattices [J]. Nature, 2018, 556(7699): 43–50. doi: 10.1038/nature26160
    [6] MAK K F, MCGILL K L, PARK J, et al. The valley Hall effect in MoS2 transistors [J]. Science, 2014, 344(6191): 1489–1492. doi: 10.1126/science.1250140
    [7] NOVOSELOV K S, JIANG Z, ZHANG Y, et al. Room-temperature quantum Hall effect in graphene [J]. Science, 2007, 315(5817): 1379. doi: 10.1126/science.1137201
    [8] FIORI G, BONACCORSO F, IANNACCONE G, et al. Electronics based on two-dimensional materials [J]. Nature Nanotechnology, 2014, 9(10): 768–779. doi: 10.1038/nnano.2014.207
    [9] HUNT B, SANCHEZ-YAMAGISHI J D, YOUNG A F, et al. Massive Dirac fermions and hofstadter butterfly in a van der Waals heterostructure [J]. Science, 2013, 340(6139): 1427–1430. doi: 10.1126/science.1237240
    [10] XIA J, YAN J X, WANG Z H, et al. Strong coupling and pressure engineering in WSe2-MoSe2 heterobilayers [J]. Nature Physics, 2021, 17(1): 92–98. doi: 10.1038/s41567-020-1005-7
    [11] KE F, CHEN Y B, YIN K T, et al. Large bandgap of pressurized trilayer graphene [J]. Proceedings of the National Academy of the Sciences of the United States of America, 2019, 116(19): 9186–9190. doi: 10.1073/pnas.1820890116
    [12] NAYAK A P, BHATTACHARYYA S, ZHU J, et al. Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide [J]. Nature Communications, 2014, 5(1): 3731. doi: 10.1038/ncomms4731
    [13] YANG L F, DAI L D, LI H P, et al. Characterization of the pressure-induced phase transition of metallization for MoTe2 under hydrostatic and non-hydrostatic conditions [J]. AIP Advanced, 2019, 9(6): 065104. doi: 10.1063/1.5097428
    [14] MAO H K, CHEN B, CHEN J H, et al. Recent advances in high-pressure science and technology [J]. Matter and Radiation at Extremes, 2016, 1(1): 59–75. doi: 10.1016/j.mre.2016.01.005
    [15] ZHAO D L, WANG M Y, XIAO G J, et al. Thinking about the development of high-pressure experimental chemistry [J]. The Journal of Physical Chemistry Letters, 2020, 11(17): 7297–7306. doi: 10.1021/acs.jpclett.0c02030
    [16] XIAO G J, GENG T, ZOU B, et al. Emerging functional materials under high pressure toward enhanced properties [J]. ACS Materials Letters, 2020, 2(9): 1233–1239. doi: 10.1021/acsmaterialslett.0c00329
    [17] LI G M, CHEN X B, GAN Y, et al. Raman spectroscopy evidence for dimerization and Mott collapse in α-RuCl3 under pressures [J]. Physical Review Materials, 2019, 3(2): 023601. doi: 10.1103/PhysRevMaterials.3.023601
    [18] DU X, SKACHKO I, BARKER A, et al. Approaching ballistic transport in suspended graphene [J]. Nature Nanotechnology, 2008, 3(8): 491–495. doi: 10.1038/nnano.2008.199
    [19] GEIM A K, NOVOSELOV K S. The rise of graphene [J]. Nature Materials, 2007, 6(3): 183–191. doi: 10.1038/nmat1849
    [20] LEE C, WEI X D, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science, 2008, 321(5887): 385–388. doi: 10.1126/science.1157996
    [21] LONG M S, WANG P, FANG H H, et al. Progress, challenges, and opportunities for 2D material based photodetectors [J]. Advanced Functional Materials, 2019, 29(19): 1803807. doi: 10.1002/adfm.201803807
    [22] CLARK S M, JEON K J, CHEN J Y, et al. Few-layer graphene under high pressure: Raman and X-ray diffraction studies [J]. Solid State Communications, 2013, 154: 15–18. doi: 10.1016/j.ssc.2012.10.002
    [23] LU S C, YAO M G, YANG X G, et al. High pressure transformation of graphene nanoplates: a Raman study [J]. Chemical Physics Letters, 2013, 585: 101–106. doi: 10.1016/j.cplett.2013.08.085
    [24] MARTINS L G P, MATOS M J S, PASCHOAL A R, et al. Raman evidence for pressure-induced formation of diamondene [J]. Nature Communications, 2017, 8(1): 96. doi: 10.1038/s41467-017-00149-8
    [25] KE F, ZHANG L K, CHEN Y B, et al. Synthesis of atomically thin hexagonal diamond with compression [J]. Nano Letters, 2020, 20(8): 5916–5921. doi: 10.1021/acs.nanolett.0c01872
    [26] GAO Y, CAO T F, CELLINI F, et al. Ultrahard carbon film from epitaxial two-layer graphene [J]. Nature Nanotechnology, 2018, 13(2): 133–138. doi: 10.1038/s41565-017-0023-9
    [27] MUNOZ F, COLLADO H P O, USAJ G, et al. Bilayer graphene under pressure: electron-hole symmetry breaking, valley Hall effect, and Landau levels [J]. Physical Review B, 2016, 93(23): 235443. doi: 10.1103/PhysRevB.93.235443
    [28] NICOLLE J, MACHON D, PONCHARAL P, et al. Pressure-mediated doping in graphene [J]. Nano Letters, 2011, 11(9): 3564–3568. doi: 10.1021/nl201243c
    [29] CARR S, FANG S A, JARILLO-HERRERO P, et al. Pressure dependence of the magic twist angle in graphene superlattices [J]. Physical Review B, 2018, 98(8): 085144. doi: 10.1103/PhysRevB.98.085144
    [30] YANKOWITZ M, CHEN S W, POLSHYN H, et al. Tuning superconductivity in twisted bilayer graphene [J]. Science, 2019, 363(6431): 1059–1064. doi: 10.1126/science.aav1910
    [31] HUANG G Q, XING Z W. Superconductivity of bilayer phosphorene under interlayer compression [J]. Chinese Physics B, 2016, 25(2): 027402. doi: 10.1088/1674-1056/25/2/027402
    [32] TRAN V, SOKLASKI R, LIANG Y F, et al. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus [J]. Physical Review B, 2014, 89(23): 235319. doi: 10.1103/PhysRevB.89.235319
    [33] LIU H, NEAL A T, ZHU Z, et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility [J]. ACS Nano, 2014, 8(4): 4033–4041. doi: 10.1021/nn501226z
    [34] GUPTA S N, SINGH A, PAL K, et al. Raman anomalies as signatures of pressure induced electronic topological and structural transitions in black phosphorus: experiments and theory [J]. Physical Review B, 2017, 96(9): 094104. doi: 10.1103/PhysRevB.96.094104
    [35] SASAKI T, KONDO K, AKAHAMA Y, et al. Raman spectroscopy of two-dimensional material under high pressure: black phosphorus ultrathin film, phosphorene [J]. Japanese Journal of Applied Physics, 2017, 56(5S3): 05FB06. doi: 10.7567/JJAP.56.05FB06
    [36] AKHTAR M, ZHANG C Y, RAJAPAKSE M, et al. Bilayer phosphorene under high pressure: in situ Raman spectroscopy [J]. Physical Chemistry Chemical Physics, 2019, 21(14): 7298–7304. doi: 10.1039/C9CP00816K
    [37] XIANG Z J, YE G J, SHANG C, et al. Pressure-induced electronic transition in black phosphorus [J]. Physical Review Letters, 2015, 115(18): 186403. doi: 10.1103/PhysRevLett.115.186403
    [38] GONG P L, LIU D Y, YANG K S, et al. Hydrostatic pressure induced three-dimensional Dirac semimetal in black phosphorus [J]. Physical Review B, 2016, 93(19): 195434. doi: 10.1103/PhysRevB.93.195434
    [39] GONG P L, DENG B, HUANG L F, et al. Robust and pristine topological Dirac semimetal phase in pressured two-dimensional black phosphorus [J]. The Journal of Physical Chemistry C, 2017, 121(38): 20931–20936. doi: 10.1021/acs.jpcc.7b08926
    [40] AKIBA K, MIYAKE A, AKAHAMA Y, et al. Two-carrier analyses of the transport properties of black phosphorus under pressure [J]. Physical Review B, 2017, 95(11): 115126. doi: 10.1103/PhysRevB.95.115126
    [41] LI C H, LONG Y J, ZHAO L X, et al. Pressure-induced topological phase transitions and strongly anisotropic magnetoresistance in bulk black phosphorus [J]. Physical Review B, 2017, 95(12): 125417. doi: 10.1103/PhysRevB.95.125417
    [42] KARUZAWA M, ISHIZUKA M, ENDO S. The pressure effect on the superconducting transition temperature of black phosphorus [J]. Journal of Physics: Condensed Matter, 2002, 14(44): 10759–10762. doi: 10.1088/0953-8984/14/44/372
    [43] MANJANATH A, SAMANTA A, PANDEY T, et al. Semiconductor to metal transition in bilayer phosphorene under normal compressive strain [J]. Nanotechnology, 2015, 26(7): 075701. doi: 10.1088/0957-4484/26/7/075701
    [44] GUO J, WANG H H, VON ROHR F, et al. Electron-hole balance and the anomalous pressure-dependent superconductivity in black phosphorus [J]. Physical Review B, 2017, 96(22): 224513. doi: 10.1103/PhysRevB.96.224513
    [45] LI X, SUN J P, SHAHI P, et al. Pressure-induced phase transitions and superconductivity in a black phosphorus single crystal [J]. Proceedings of the National Academy of the Sciences of the United States of America, 2018, 115(40): 9935–9940. doi: 10.1073/pnas.1810726115
    [46] SUN J B, LITCHINITSER N M, ZHOU J. Indefinite by nature: from ultraviolet to terahertz [J]. ACS Photonics, 2014, 1(4): 293–303. doi: 10.1021/ph4000983
    [47] BARBOZA A P M, MATOS M J S, CHACHAM H, et al. Compression-induced modification of boron nitride layers: a conductive two-dimensional BN compound [J]. ACS Nano, 2018, 12(6): 5866–5872. doi: 10.1021/acsnano.8b01911
    [48] MICHEL K H, VERBERCK B. Theory of elastic and piezoelectric effects in two-dimensional hexagonal boron nitride [J]. Physical Review B, 2009, 80(22): 224301. doi: 10.1103/PhysRevB.80.224301
    [49] DUERLOO K A N, REED E J. Flexural electromechanical coupling: a nanoscale emergent property of boron nitride bilayers [J]. Nano Letters, 2013, 13(4): 1681–1686. doi: 10.1021/nl4001635
    [50] SEGURA A, CUSCÓ R, TANIGUCHI T, et al. High-pressure softening of the out-of-plane A2u (transverse-optic) mode of hexagonal boron nitride induced by dynamical buckling [J]. The Journal of Physical Chemistry C, 2019, 123(28): 17491–17497. doi: 10.1021/acs.jpcc.9b04582
    [51] MENG Y, MAO H K, ENG P J, et al. The formation of sp3 bonding in compressed BN [J]. Nature Materials, 2004, 3(2): 111–114. doi: 10.1038/nmat1060
    [52] KÜRKÇÜ C, YAMÇIÇIER Ç. Structural, electronic, elastic and vibrational properties of two dimensional graphene-like BN under high pressure [J]. Solid State Communications, 2019: 303–304. doi: 10.1016/j.ssc.2019.113740
    [53] JI C, LEVITAS V I, ZHU H Y, et al. Shear-induced phase transition of nanocrystalline hexagonal boron nitride to wurtzitic structure at room temperature and lower pressure [J]. Proceedings of the National Academy of the Sciences of the United States of America, 2012, 109(47): 19108–19112. doi: 10.1073/pnas.1214976109
    [54] HROMADOVÁ L, MARTOŇÁK R. Pressure-induced structural transitions in BN from ab initio metadynamics [J]. Physical Review B, 2011, 84(22): 224108. doi: 10.1103/PhysRevB.84.224108
    [55] AN X H, SUN J H, LU Z B, et al. Pressure-induced insulator-semiconductor transition in bilayer hexagonal boron nitride [J]. Ceramics International, 2017, 43(8): 6626–6630. doi: 10.1016/j.ceramint.2017.02.037
    [56] XUE Y Z, WANG H, TAN Q H, et al. Anomalous pressure characteristics of defects in hexagonal boron nitride flakes [J]. ACS Nano, 2018, 12(7): 7127–7133. doi: 10.1021/acsnano.8b02970
    [57] BARBOZA A P M, CHACHAM H, OLIVEIRA C K, et al. Dynamic negative compressibility of few-layer graphene, h-BN, and MoS2 [J]. Nano Letters, 2012, 12(5): 2313–2317. doi: 10.1021/nl300183e
    [58] WANG Q H, KALANTAR-ZADEH K, KIS A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides [J]. Nature Nanotechnology, 2012, 7(11): 699–712. doi: 10.1038/nnano.2012.193
    [59] YUN W S, HAN S W, HONG S C, et al. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te) [J]. Physical Review B, 2012, 85(3): 033305. doi: 10.1103/PhysRevB.85.033305
    [60] RADISAVLJEVIC B, RADENOVIC A, BRIVIO J, et al. Single-layer MoS2 transistors [J]. Nature Nanotechnology, 2011, 6(3): 147–150. doi: 10.1038/nnano.2010.279
    [61] ZHAO Z, ZHANG H J, YUAN H T, et al. Pressure induced metallization with absence of structural transition in layered molybdenum diselenide [J]. Nature Communications, 2015, 6(1): 7312. doi: 10.1038/ncomms8312
    [62] CHENG X R, LI Y Y, SHANG J M, et al. Thickness-dependent phase transition and optical behavior of MoS2 films under high pressure [J]. Nano Research, 2018, 11(2): 855–863. doi: 10.1007/s12274-017-1696-y
    [63] DUWAL S, YOO C S. Shear-induced isostructural phase transition and metallization of layered tungsten disulfide under nonhydrostatic compression [J]. The Journal of Physical Chemistry C, 2016, 120(9): 5101–5107. doi: 10.1021/acs.jpcc.5b10759
    [64] SHEN P F, MA X, GUAN Z, et al. Linear tunability of the band gap and two-dimensional (2D) to three-dimensional (3D) isostructural transition in WSe2 under high pressure [J]. The Journal of Physical Chemistry C, 2017, 121(46): 26019–26026. doi: 10.1021/acs.jpcc.7b10280
    [65] ZHOU Y H, CHEN X L, LI N N, et al. Pressure-induced Td to 1T′ structural phase transition in WTe2 [J]. AIP Advances, 2016, 6(7): 075008. doi: 10.1063/1.4959026
    [66] LU P C, KIM J S, YANG J, et al. Origin of superconductivity in the Weyl semimetal WTe2 under pressure [J]. Physical Review B, 2016, 94(22): 224512. doi: 10.1103/PhysRevB.94.224512
    [67] EKTARAWONG A, TSUPPAYAKORN-AEK P, BOVORNRATANARAKS T, et al. Effect of thermally excited lattice vibrations on the thermodynamic stability of tungsten ditellurides WTe2 under high pressure: a first-principles investigation [J]. Computational Materials Science, 2021, 186: 110024. doi: 10.1016/j.commatsci.2020.110024
    [68] ZHOU D W, ZHOU Y H, PU C Y, et al. Pressure-induced metallization and superconducting phase in ReS2 [J]. NPJ Quantum Materials, 2017, 2: 19. doi: 10.1038/s41535-017-0023-x
    [69] YAN Y L, JIN C L, WANG J, et al. Associated lattice and electronic structural evolutions in compressed multilayer ReS2 [J]. The Journal of Physical Chemistry Letters, 2017, 8(15): 3648–3655. doi: 10.1021/acs.jpclett.7b01031
    [70] DOU X M, DING K, JIANG D S, et al. Probing spin-orbit coupling and interlayer coupling in atomically thin molybdenum disulfide using hydrostatic pressure [J]. ACS Nano, 2016, 10(1): 1619–1624. doi: 10.1021/acsnano.5b07273
    [71] CHI Z H, CHEN X L, YEN F. Superconductivity in pristine 2Ha-MoS2 at ultrahigh pressure [J]. Physical Review Letters, 2018, 120(3): 037002. doi: 10.1103/PhysRevLett.120.037002
    [72] RIFLIKOVÁ M, MARTOŇÁK R, TOSATTI E. Pressure-induced gap closing and metallization of MoSe2 and MoTe2 [J]. Physical Review B, 2014, 90(3): 035108. doi: 10.1103/PhysRevB.90.035108
    [73] NAYAK A P, YUAN Z, CAO B X, et al. Pressure-modulated conductivity, carrier density, and mobility of multilayered tungsten disulfide [J]. ACS Nano, 2015, 9(9): 9117–9123. doi: 10.1021/acsnano.5b03295
    [74] CAI P L, HU J, HE L P, et al. Drastic pressure effect on the extremely large magnetoresistance in WTe2: quantum oscillation study [J]. Physical Review Letters, 2015, 115(5): 057202. doi: 10.1103/PhysRevLett.115.057202
    [75] GUO Y Q, DENG H T, SUN X, et al. Modulation of metal and insulator states in 2D ferromagnetic VS2 by van der Waals interaction engineering [J]. Advanced Materials, 2017, 29(29): 1700715. doi: 10.1002/adma.201700715
    [76] WANG P, WANG Y G, QU J Y, et al. Pressure-induced structural and electronic transitions, metallization, and enhanced visible-light responsiveness in layered rhenium disulphide [J]. Physical Review B, 2018, 97(23): 235202. doi: 10.1103/PhysRevB.97.235202
    [77] NAYAK A P, PANDEY T, VOIRY D, et al. Pressure-dependent optical and vibrational properties of monolayer molybdenum disulfide [J]. Nano Letters, 2015, 15(1): 346–353. doi: 10.1021/nl5036397
    [78] BANDARU N, KUMAR R S, SNEED D, et al. Effect of pressure and temperature on structural stability of MoS2 [J]. The Journal of Physical Chemistry C, 2014, 118(6): 3230–3235. doi: 10.1021/jp410167k
    [79] BANDARU N, KUMAR R S, BAKER J, et al. Structural stability of WS2 under high pressure [J]. International Journal of Modern Physics B, 2014, 28(25): 1450168. doi: 10.1142/S0217979214501689
    [80] HAN B, LI F F, LI L, et al. Correlatively dependent lattice and electronic structural evolutions in compressed monolayer tungsten disulfide [J]. The Journal of Physical Chemistry Letters, 2017, 8(5): 941–947. doi: 10.1021/acs.jpclett.7b00133
    [81] GONG Y B, ZHOU Q, HUANG X L, et al. Pressure-induced photoluminescence adjustment and lattice disorder in monolayer WSe2 [J]. ChemNanoMat, 2017, 3(4): 238–244. doi: 10.1002/cnma.201600346
    [82] MENG X H, PANDEY T, JEONG J, et al. Thermal conductivity enhancement in MoS2 under extreme strain [J]. Physical Review Letters, 2019, 122(15): 155901. doi: 10.1103/PhysRevLett.122.155901
    [83] XIA J, LI D F, ZHOU J D, et al. Pressure-induced phase transition in Weyl semimetallic WTe2 [J]. Small, 2017, 13(40): 1701887. doi: 10.1002/smll.201701887
    [84] TONGAY S, SAHIN H, KO C, et al. Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling [J]. Nature Communications, 2014, 5(1): 3252. doi: 10.1038/ncomms4252
    [85] DOU X M, DING K, JIANG D S, et al. Tuning and identification of interband transitions in monolayer and bilayer molybdenum disulfide using hydrostatic pressure [J]. ACS Nano, 2014, 8(7): 7458–7464. doi: 10.1021/nn502717d
    [86] FU L, WAN Y, TANG N, et al. K-Λ crossover transition in the conduction band of monolayer MoS2 under hydrostatic pressure [J]. Science Advances, 2017, 3(11): e1700162. doi: 10.1126/sciadv.1700162
    [87] YE Y X, DOU X M, DING K, et al. Pressure-induced K-Λ crossing in monolayer WSe2 [J]. Nanoscale, 2016, 8(20): 10843–10848. doi: 10.1039/C6NR02690G
    [88] OLIVA R, LAURIEN M, DYBALA F, et al. Pressure dependence of direct optical transitions in ReS2 and ReSe2 [J]. NPJ 2D Materials and Applications, 2019, 3(1): 20. doi: 10.1038/s41699-019-0102-x
    [89] FAN W, ZHU X, KE F, et al. Vibrational spectrum renormalization by enforced coupling across the van der Waals gap between MoS2 and WS2 monolayers [J]. Physical Review B, 2015, 92(24): 241408(R). doi: 10.1103/PhysRevB.92.241408
    [90] FU X P, LI F F, LIN J F, et al. Coupling-assisted renormalization of excitons and vibrations in compressed MoSe2-WSe2 heterostructure [J]. The Journal of Physical Chemistry C, 2018, 122(10): 5820–5828. doi: 10.1021/acs.jpcc.8b01453
    [91] PANDEY T, NAYAK A P, LIU J, et al. Pressure-induced charge transfer doping of monolayer graphene/MoS2 heterostructure [J]. Small, 2016, 12(30): 4063–4069. doi: 10.1002/smll.201600808
    [92] BARBOZA A P M, SOUZA A C R, MATOS M J S, et al. Graphene/h-BN heterostructures under pressure: from van der Waals to covalent [J]. Carbon, 2019, 155: 108–113. doi: 10.1016/j.carbon.2019.08.054
    [93] CHANTNGARM P, SOODCHOMSHOM B. Pressure control of charge and spin currents in graphene/MoS2 heterostructures [J]. Journal of Magnetism and Magnetic Materials, 2019, 473: 291–295. doi: 10.1016/j.jmmm.2018.10.047
    [94] MOAIED M, HONG J S. Tuning the magnetic properties of hydrogenated bilayer graphene and graphene/h-BN heterostructures by compressive pressures [J]. Carbon, 2018, 131: 266–274. doi: 10.1016/j.carbon.2018.01.102
    [95] JAKHAR M, SINGH J, KUMAR A, et al. Pressure and electric field tuning of Schottky contacts in PdSe2/ZT-MoSe2 van der Waals heterostructure [J]. Nanotechnology, 2020, 31(14): 145710. doi: 10.1088/1361-6528/ab5de1
    [96] YANKOWITZ M, WATANABE K, TANIGUCHI T, et al. Pressure-induced commensurate stacking of graphene on boron nitride [J]. Nature Communications, 2016, 7(1): 13168. doi: 10.1038/ncomms13168
    [97] YANKOWITZ M, JUNG J, LAKSONO E, et al. Dynamic band-structure tuning of graphene moiré superlattices with pressure [J]. Nature, 2018, 557(7705): 404–408. doi: 10.1038/s41586-018-0107-1
  • 加载中
图(6)
计量
  • 文章访问数:  4042
  • HTML全文浏览量:  1938
  • PDF下载量:  157
出版历程
  • 收稿日期:  2021-03-10
  • 修回日期:  2021-04-11

目录

    /

    返回文章
    返回