防弹衣抗小钨球侵彻性能的数值模拟

唐昌州 智小琦 郝春杰 范兴华

唐昌州, 智小琦, 郝春杰, 范兴华. 防弹衣抗小钨球侵彻性能的数值模拟[J]. 高压物理学报, 2021, 35(3): 034203. doi: 10.11858/gywlxb.20210715
引用本文: 唐昌州, 智小琦, 郝春杰, 范兴华. 防弹衣抗小钨球侵彻性能的数值模拟[J]. 高压物理学报, 2021, 35(3): 034203. doi: 10.11858/gywlxb.20210715
TANG Changzhou, ZHI Xiaoqi, HAO Chunjie, FAN Xinghua. Numerical Simulation of Anti-Penetration Performance of Body Armor against Small Tungsten Sphere[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 034203. doi: 10.11858/gywlxb.20210715
Citation: TANG Changzhou, ZHI Xiaoqi, HAO Chunjie, FAN Xinghua. Numerical Simulation of Anti-Penetration Performance of Body Armor against Small Tungsten Sphere[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 034203. doi: 10.11858/gywlxb.20210715

防弹衣抗小钨球侵彻性能的数值模拟

doi: 10.11858/gywlxb.20210715
详细信息
    作者简介:

    唐昌州(1996-),男,硕士研究生,主要从事弹药工程及毁伤技术研究. E-mail:562870134@qq.com

    通讯作者:

    智小琦(1963-),女,博士,教授,主要从事武器毁伤与装药技术研究. E-mail:zxq4060@sina.com

  • 中图分类号: O385

Numerical Simulation of Anti-Penetration Performance of Body Armor against Small Tungsten Sphere

  • 摘要: 为研究防弹衣抗小钨球侵彻的性能,结合试验,利用有限元分析软件LS-DYNA建立了小钨球侵彻防弹衣的数值模型。在此基础上,对侵彻过程进行了数值模拟,分析了防弹衣的破坏机理,并探讨了凯夫拉(Kevlar)与超高分子量聚乙烯(Ultra-high molecular weight polyethylene, UHMWPE)混杂配比对防弹衣抗侵彻性能的影响。研究结果表明:在小钨球侵彻作用下,防弹衣迎弹面主要发生纤维剪切破坏,背弹面主要发生纤维拉伸断裂破坏,并伴随着一定的层间分层破坏。随着着靶速度的提高,纤维的拉伸及分层破坏程度降低;与单一Kevlar制作的防弹衣相比,采用面板Kevlar、背板UHMWPE混杂结构的防弹衣抗侵彻性能更好。当Kevlar/UHMWPE的体积配比分别为1∶1、1∶2和1∶4时,防弹衣的抗侵彻性能分别提高3.7%、5.3%和4.4%,质量分别减少14.1%、18.8%和22.5%。综合考虑防弹衣的抗侵彻性能和重量,采用Kevlar/UHMWPE混杂配比为1∶2的防弹衣结构最佳;在弹道极限附近,采用Kevlar/UHMWPE混杂结构的防弹衣的吸能效果优于单一Kevlar结构,且随着着靶速度的提高,两者的吸能差异逐渐减小。研究结果对防护装备的优化设计具有一定的参考价值。

     

  • 图  破片及弹托

    Figure  1.  Fragments and sabots

    图  试验布置示意图

    Figure  2.  Schematic diagram of experimental set-up

    图  防弹纤维的典型破坏状态

    Figure  3.  Typical failure states of bulletproof fiber

    图  有限元模型

    Figure  4.  Finite element model

    图  不同着靶速度下防弹衣的破坏情况

    Figure  5.  Failure modes of body armor at different impact velocities

    图  小钨球侵彻防弹衣过程中的von-Mises应力变化(v = 748.4 m/s)

    Figure  6.  Von-Mises stress variation of small tungsten sphere penetrating into body armor (v = 748.4 m/s)

    图  纤维层面内的von-Mises应力变化(v = 748.4 m/s)

    Figure  7.  Von-Mises stress variation on fiber layer (v = 748.4 m/s)

    图  小钨球侵彻不同结构防弹衣的弹道极限

    Figure  8.  Ballistic limit of small tungsten sphere penetrating into body armor with different structures

    图  小钨球侵彻不同结构防弹衣的速度和加速度变化曲线(v = 775.0 m/s)

    Figure  9.  Velocity and acceleration variation curves of small tungsten spherepenetrating into body armor with different structures (v = 775.0 m/s)

    图  10  小钨球侵彻不同结构防弹衣的仿真结果(v = 775.0 m/s, t = 7 μs)

    Figure  10.  Simulation results of small tungsten sphere penetrating into body armor with different structures (v = 775.0 m/s, t = 7 μs)

    图  11  小钨球侵彻不同结构防弹衣的剩余速度

    Figure  11.  Residual velocity of small tungsten sphere penetrating into body armor with different structures

    表  1  试验数据

    Table  1.   Experimental data

    No.Impact velocity/(m·s−1)Residual velocity/(m·s−1)Perforation diameter/mmPerforation
    1694.802.90No
    2714.802.92No
    3725.302.92No
    4732.715.22.96Yes
    5748.4118.32.98Yes
    6811.5189.62.98Yes
    下载: 导出CSV

    表  2  钨球材料模型参数

    Table  2.   Material model parameters of tungsten sphere

    $\;\rho $/(g·cm−3)E/GPa$\;\mu $$\sigma{_0}$/MPaEt/MPa$\;\beta $CP$\varepsilon_{\rm{f}}$
    13.73670.3031 50679213.961.2
    下载: 导出CSV

    表  3  Kevlar材料模型参数

    Table  3.   Material model parameters of Kevlar

    $\;\rho $/(g·cm−3)E1/GPaE2/GPaE3/GPa$\;\mu $12$\;\mu $13$\;\mu $23G12/GPaG13/GPaG23/GPa
    1.3521214.60.310.140.141.21.21.2
    Kf/GPaSC/GPaXT/GPaYT/GPaYC/GPaαSN/GPaS13/GPaS23/GPa
    20.251.81.81.40.50.550.550.55
    下载: 导出CSV

    表  4  仿真值与试验值的比较

    Table  4.   Comparison between simulation results and experimental results

    No.Impact velocity/(m·s−1)Residual velocity/(m·s−1)Perforation diameter/mmBallistic limit/(m·s−1)Error/%
    ExperimentSimulationExperimentSimulationExperimentSimulation
    1694.8002.902.837297320.41
    2714.8002.922.86
    3725.3002.922.81
    4732.7 15.2 19.22.962.85
    5748.4118.3108.02.982.87
    6811.5189.6208.32.982.86
    下载: 导出CSV

    表  5  UHMWPE材料模型参数[18]

    Table  5.   Material model parameters of UHMWPE[18]

    $\;\rho $/(g·cm−3)E1/GPaE2/GPaE3/GPa$\;\mu $12$\;\mu $13$\;\mu $23G12/GPaG13/GPaG23/GPa
    0.9730.730.71.970.0080.0440.0440.730.670.67
    Kf/GPaSC/GPaXT/GPaYT/GPaYC/GPaαSN/GPaS13/GPaS23/GPa
    2.20.363.03.02.50.50.950.950.95
    下载: 导出CSV

    表  6  小钨球侵彻不同结构防弹衣弹道极限的仿真结果

    Table  6.   Simulation results of ballistic limit of small tungsten sphere penetrating into body armor with different structures

    Type of tungsten sphereThickness of body armor/mmStructure of body armorBallistic limit/(m·s−1)
    0.16 g, $\varnothing $2.8 mm9K1U1759.0
    K1U2771.0
    K1U4764.0
    下载: 导出CSV

    表  7  小钨球侵彻不同结构防弹衣的仿真结果

    Table  7.   Simulation results of small tungsten sphere penetrating into body armor with different structures

    Type of tungsten sphereThickness of body armor/mmImpact velocity/(m·s−1)Residual velocity/(m·s−1)
    K1U0K1U1K1U2K1U4
    0.16 g, $\varnothing $2.8 mm9750.0108.9000
    775.0162.1114.6 60.2 80.1
    800.0199.5187.6164.6177.0
    825.0241.6229.9206.5219.6
    850.0282.9274.3254.5265.4
    下载: 导出CSV
  • [1] FLANAGAN M P, ZIKRY M A, WALL J W, et al. An experimental investigation of high velocity impact and penetration failure modes in textile composites [J]. Journal of Composite Materials, 1999, 33(12): 1080–1103. doi: 10.1177/002199839903301202
    [2] SIKARWAR R S, VELMURUGAN R, GUPTA N K. Influence of fiber orientation and thickness on the response of glass/epoxy composites subjected to impact loading [J]. Composites Part B: Engineering, 2014, 60: 627–636. doi: 10.1016/j.compositesb.2013.12.023
    [3] NAIK N K, SHRIRAO P, REDDY B C K. Ballistic impact behaviour of woven fabric composites: parametric studies [J]. Materials Science and Engineering: A, 2005, 412(1/2): 104–116.
    [4] MAJZOOBI G H, ZAHERIB F M. Numerical and experimental study of ballistic response of kevlar fabric and Kevlar/Epoxy composite [J]. International Journal of Engineering, Transactions B: Applications, 2017, 30(5): 791–799.
    [5] JORDAN J B, NAITO C J. An experimental investigation of the effect of nose shape on fragments penetrating GFRP [J]. International Journal of Impact Engineering, 2014, 63: 63–71. doi: 10.1016/j.ijimpeng.2013.08.002
    [6] 邓云飞, 蔡雄峰, 曾宪智, 等. 弹体头部形状对碳纤维层合板抗冲击性能影响实验研究 [J]. 振动与冲击, 2020, 39(7): 86–92.

    DENG Y F, CAI X F, ZENG X Z, et al. Tests for effects of projectile nose shape on anti-impact performance of carbon fiber reinforced plates [J]. Journal of Vibration and Shock, 2020, 39(7): 86–92.
    [7] 谢文波, 张伟, 姜雄文. 钢球斜侵彻碳纤维复合材料板的实验研究 [J]. 爆炸与冲击, 2018, 38(3): 647–653.

    XIE W B, ZHANG W, JIANG X W. Oblique penetration on CFRPs by steel sphere [J]. Explosion and Shock Waves, 2018, 38(3): 647–653.
    [8] 秦建兵, 韩志军, 刘云雁, 等. 复合材料层合板侵彻行为的研究 [J]. 振动与冲击, 2013, 32(24): 122–126.

    QIN J B, HAN Z J, LIU Y Y, et al. Penetration behavior of composite laminated plates [J]. Journal of Vibration and Shock, 2013, 32(24): 122–126.
    [9] 肖露, 程建芳, 柴晓明, 等. 层间混杂复合材料的弹道侵彻性能研究 [J]. 浙江理工大学学报, 2013, 30(4): 471–476.

    XIAO L, CHENG J F, CHAI X M, et al. Study on ballistic penetration property of interply hybrid composite material [J]. Journal of Zhejiang Sci-Tech University, 2013, 30(4): 471–476.
    [10] 肖文莹, 李想, 郭万涛, 等. Kevlar/UHMWPE混杂纤维复合材料抗弹性能 [J]. 玻璃钢/复合材料, 2019(9): 79–84.

    XIAO W Y, LI X, GUO W T, et al. Resistance performance of Kevlar/UHMWPE fiber hybrid composites [J]. Fiber Reinforced Plastics/Composites, 2019(9): 79–84.
    [11] 秦溶蔓, 朱波, 乔琨, 等. 陶瓷/纤维复合材料层间混杂结构对装甲板抗侵彻性能的影响 [J]. 材料导报, 2020, 34(9): 18183–18187.

    QIN R M, ZHU B, QIAO K, et al. Effect of hybrid structure of ceramic/fiber composite material on penetration resistance of armor plate [J]. Materials Reports, 2020, 34(9): 18183–18187.
    [12] 黄献聪. 军用防弹衣的性能需求与发展方向[C]//2005现代服装纺织高科技发展研讨会. 北京: 北京纺织工程学会, 2005: 396−402.

    HUANG X C. Performance requirements and development direction of military body armor [C]//2005 Symposium on High Tech Development of Modern Clothing and Textile. Beijing: Beijing Textile Engineering Society, 2005: 396−402.
    [13] 纤维增强复合材料抗破片模拟弹性能试验方法 V50法: GB/T 32497–2016 [S]. 北京: 中国标准出版社, 2016.

    Test method of ballistic resistance against fragment simulating projectiles for fiber-reinforced composites—V50 method: GB/T 32497–2016 [S]. Beijing: China Standard Press, 2016.
    [14] 刘国繁. 层合结构复合材料抗弹机理研究及模拟仿真[D]. 南京: 南京航空航天大学, 2015: 15−16.

    LIU G F. Study on numerical simulation of ballistic damage mechanisms of laminated composites [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015: 15−16.
    [15] 唐昌州, 智小琦, 徐锦波, 等. 小钨球对防弹衣加松木靶的侵彻研究 [J]. 高压物理学报, 2020, 34(5): 055101.

    TANG C Z, ZHI X Q, XU J B, et al. Research on small tungsten spheres penetrating into pine target with body armor [J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 055101.
    [16] CHANG F K, CHANG K Y. Post-failure analysis of bolted composite joints in tension or shear-out mode failure [J]. Journal of Composite Materials, 1987, 21(9): 809–833. doi: 10.1177/002199838702100903
    [17] CHANG F K, CHANG K Y. A progressive damage model for laminated composites containing stress concentrations [J]. Journal of Composite Materials, 1987, 21(9): 834–855. doi: 10.1177/002199838702100904
    [18] 胡年明, 陈长海, 侯海量, 等. 高速弹丸冲击下复合材料层合板损伤特性仿真研究 [J]. 兵器材料科学与工程, 2017, 40(3): 66–70.

    HU N M, CHEN C H, HOU H L, et al. Simulation on damage characteristic of composite laminates under high-velocity projectile impact [J]. Ordnance Material Science and Engineering, 2017, 40(3): 66–70.
    [19] 乔咏梅, 余铜辉. 软质防弹衣结构分析与性能研究 [J]. 警察技术, 2017(3): 81–84.

    QIAO Y M, YU T H. Structure analysis and performance research of soft body armor [J]. Police Technology, 2017(3): 81–84.
  • 加载中
图(11) / 表(7)
计量
  • 文章访问数:  3288
  • HTML全文浏览量:  1486
  • PDF下载量:  41
出版历程
  • 收稿日期:  2021-01-26
  • 修回日期:  2021-02-07

目录

    /

    返回文章
    返回