动态压力加载/卸载装置dDAC及原位表征技术研究进展

苏磊 杨国强

苏磊, 杨国强. 动态压力加载/卸载装置dDAC及原位表征技术研究进展[J]. 高压物理学报, 2021, 35(6): 060102. doi: 10.11858/gywlxb.20210505
引用本文: 苏磊, 杨国强. 动态压力加载/卸载装置dDAC及原位表征技术研究进展[J]. 高压物理学报, 2021, 35(6): 060102. doi: 10.11858/gywlxb.20210505
SU Lei, YANG Guoqiang. Research Progress of Dynamic Pressure Loading/Unloading Device and In-Situ Characterization Technology[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 060102. doi: 10.11858/gywlxb.20210505
Citation: SU Lei, YANG Guoqiang. Research Progress of Dynamic Pressure Loading/Unloading Device and In-Situ Characterization Technology[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 060102. doi: 10.11858/gywlxb.20210505

动态压力加载/卸载装置dDAC及原位表征技术研究进展

doi: 10.11858/gywlxb.20210505
基金项目: 国家自然科学基金重大科研仪器专项(21627802)
详细信息
    作者简介:

    苏 磊(1977-),男,博士,研究员,主要从事高压物理和高压化学研究. E-mail:leisu2050@iccas.ac.cn

  • 中图分类号: O521.3

Research Progress of Dynamic Pressure Loading/Unloading Device and In-Situ Characterization Technology

  • 摘要: 动态压力加载/卸载装置dDAC(Dynamic diamond anvil cell)是近年来备受高压界关注的研究装置之一,可以用来开展亚稳态材料制备、相变动力学、超高压化学等方面研究,在材料学、凝聚态物理学、化学、地学等领域具有重要的应用前景。综述了近年来国内外动态压力加载/卸载装置及原位表征技术的研究进展,详细介绍了一套新型与原位时间分辨光谱测试系统及原位加热/冷却系统相结合的、具有较大加载/卸载速度和较宽压力范围的动态压力加载/卸载装置。该动态压力加载/卸载装置及原位光谱表征系统的建立,将成为新的高压实验研究平台,从而促进高压极端条件下材料新结构和新性能等方面的研究。

     

  • 图  dDAC示意图

    Figure  1.  Schematic of dDAC

    图  dDAC的特征压力加载速度

    Figure  2.  Characteristic compression rate of dDAC

    图  函数信号发生器产生的4种周期性波形

    Figure  3.  Four types of periodic waveforms generated by function generator

    图  时间分辨荧光光谱系统

    Figure  4.  Time-resolved fluorescent spectroscopy system

    图  样品(a)与红宝石(b)的时间分辨荧光光谱

    Figure  5.  Time-resolved fluorescent spectra of sample (a) and ruby (b)

    图  时间分辨拉曼光谱系统

    Figure  6.  Time-resolved Raman system

    图  α-S8的Raman光谱(曝光时间:1 ms)

    Figure  7.  Raman spectrum of α-S8 (exposure time: 1 ms)

    图  高速成像系统

    Figure  8.  High-speed camera system

    图  液态硫在动态压力加载过程中的颜色变化(曝光时间:100 μs)

    Figure  9.  Color change of liquid sulfur captured during pressurization (exposure time: 100 μs)

  • [1] HIRAI H, KONDO K I, YOSHIZAWA N, et al. Amorphous diamond from C60 fullerene [J]. Applied Physics Letters, 1994, 64(14): 1797–1799. doi: 10.1063/1.111811
    [2] YANG C, LIU R P, ZHAN Z J, et al. Formation of ZrTiCuNiBe bulk metallic glass by shock-wave quenching [J]. Applied Physics Letters, 2005, 87(5): 051904. doi: 10.1063/1.2005367
    [3] HONG S M, LIU X R, SU L, et al. Rapid compression induced solidification of two amorphous phases of poly (ethylene terephthalate) [J]. Journal of Physics D: Applied Physics, 2006, 39(16): 3684–3688. doi: 10.1088/0022-3727/39/16/024
    [4] JIA R, SHAO C G, SU L, et al. Rapid compression induced solidification of bulk amorphous sulfur [J]. Journal of Physics D: Applied Physics, 2007, 40(12): 3763–3766. doi: 10.1088/0022-3727/40/12/030
    [5] LIU X R, HONG S M, LÜ S J, et al. Preparation of La68Al10Cu20Co2 bulk metallic glass by rapid compression [J]. Applied Physics Letters, 2007, 91(8): 081910. doi: 10.1063/1.2773751
    [6] LIU X R, HONG S M. Evidence for a pressure-induced phase transition of amorphous to amorphous in two lanthanide-based bulk metallic glasses [J]. Applied Physics Letters, 2007, 90(25): 251903. doi: 10.1063/1.2749722
    [7] HE D W, ZHANG F X, ZHANG M, et al. Quenching with rapid decompression: a new method for rapid solidification [J]. Applied Physics Letters, 1997, 71(26): 3811–3813. doi: 10.1063/1.120542
    [8] BOEHLER R. Adiabats (∂T/∂P)s and Grüneisen parameter of NaCl up to 50 kilobars and 800 ℃ [J]. Journal of Geophysical Research: Solid Earth, 1981, 86(B8): 7159–7162. doi: 10.1029/JB086iB08p07159
    [9] BOEHLER R, GETTING I C, KENNEDY G C. Grüneisen parameter of NaCl at high compressions [J]. Journal of Physics and Chemistry of Solids, 1977, 38(3): 233–236. doi: 10.1016/0022-3697(77)90095-6
    [10] 王筑明, 谢鸿森, 郭捷, 等. 高压下铝的Grüneisen参数的实验测量 [J]. 高压物理学报, 1998, 12(1): 54–59. doi: 10.11858/gywlxb.1998.01.009

    WANG Z M, XIE H S, GUO J, et al. Measurement of Grüneisen parameter of aluminum at high pressure [J]. Chinese Journal of High Pressure Physics, 1998, 12(1): 54–59. doi: 10.11858/gywlxb.1998.01.009
    [11] HONG S M, CHEN L Y, LIU X R, et al. High pressure jump apparatus for measuring Grüneisen parameter of NaCl and studying metastable amorphous phase of Poly (ethylene terephthalate) [J]. Review of Scientific Instruments, 2005, 76(5): 053905. doi: 10.1063/1.1899443
    [12] QUEDNAU J, SCHNEIDER G M. A new high-pressure cell for differential pressure-jump experiments using optical detection [J]. Review of Scientific Instruments, 1989, 60(12): 3685–3687. doi: 10.1063/1.1140475
    [13] SINANIS S, SCHNEIDER G M. Pressure-jump investigations on the kinetics of the isotropic-nematic phase transition of a liquid crystal: time behavior of the scattered and transmitted light intensities for PCH 5 [J]. Berichte der Bunsengesellschaft für Physikalische Chemie, 1998, 102(5): 745–750. doi: 10.1002/bbpc.19981020507
    [14] STEINHART M, KRIECHBAUM M, PRESSL K, et al. High-pressure instrument for small- and wide-angle X-ray scattering. Ⅱ. time-resolved experiments [J]. Review of Scientific Instruments, 1999, 70(2): 1540–1545. doi: 10.1063/1.1149621
    [15] WOENCKHAUS J, KÖHLING R, WINTER R, et al. High pressure-jump apparatus for kinetic studies of protein folding reactions using the small-angle synchrotron X-ray scattering technique [J]. Review of Scientific Instruments, 2000, 71(10): 3895–3899. doi: 10.1063/1.1290508
    [16] WOENCKHAUS J, KÖHLING R, THIYAGARAJAN P, et al. Pressure-jump small-angle X-ray scattering detected kinetics of staphylococcal nuclease folding [J]. Biophysical Journal, 2001, 80(3): 1518–1523. doi: 10.1016/S0006-3495(01)76124-3
    [17] HERBERHOLD H, WINTER R. Temperature- and pressure-induced unfolding and refolding of ubiquitin: a static and kinetic Fourier transform infrared spectroscopy study [J]. Biochemistry, 2002, 41(7): 2396–2401. doi: 10.1021/bi012023b
    [18] HERBERHOLD H, MARCHAL S, LANGE R, et al. Characterization of the pressure-induced intermediate and unfolded state of red-shifted green fluorescent protein: a static and kinetic FTIR, UV/VIS and fluorescence spectroscopy study [J]. Journal of Molecular Biology, 2003, 330(5): 1153–1164. doi: 10.1016/S0022-2836(03)00657-0
    [19] EVANS W J, YOO C S, LEE G W, et al. Dynamic diamond anvil cell (dDAC): a novel device for studying the dynamic-pressure properties of materials [J]. Review of Scientific Instruments, 2007, 78(7): 073904. doi: 10.1063/1.2751409
    [20] LEE W G, EVANS W J, YOO C S. Crystallization of water in a dynamic diamond-anvil cell: evidence for ice Ⅻ-like local order in supercompressed water [J]. Physical Review B, 2006, 74(13): 134112. doi: 10.1103/PhysRevB.74.134112
    [21] LEE G W, EVANS W J, YOO C S. Dynamic pressure-induced dendritic and shock crystal growth of ice Ⅵ [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(22): 9178–9181. doi: 10.1073/pnas.0609390104
    [22] HABERL B, GUTHRIE M, MALONE B D, et al. Controlled formation of metastable germanium polymorphs [J]. Physical Review B, 2014, 89(14): 144111. doi: 10.1103/PhysRevB.89.144111
    [23] HABERL B, GUTHRIE M, SINOGEIKIN S V, et al. Thermal evolution of the metastable r8 and bc8 polymorphs of silicon [J]. High Pressure Research, 2015, 35(2): 99–116. doi: 10.1080/08957959.2014.1003555
    [24] CHEN J Y, YOO C S. High density amorphous ice at room temperature [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(19): 7685–7688. doi: 10.1073/pnas.1100752108
    [25] SINOGEIKIN S V, SMITH J S, ROD E, et al. Online remote control systems for static and dynamic compression and decompression using diamond anvil cells [J]. Review of Scientific Instruments, 2015, 86(7): 072209. doi: 10.1063/1.4926892
    [26] KIM Y J, LEE Y H, LEE S, et al. Shock growth of ice crystal near equilibrium melting pressure under dynamic compression [J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(18): 8679–8684. doi: 10.1073/pnas.1818122116
    [27] LIERMANN H P, MORGENROTH W, EHNES A, et al. The extreme conditions beamline at PETRA Ⅲ, DESY: possibilities to conduct time resolved monochromatic diffraction experiments in dynamic and laser heated DAC [C]//International Conference on High Pressure Science and Technology. Tokyo: IOP Publishing, 2010: 012029.
    [28] LIN C L, SMITH J S, SINOGEIKIN S V, et al. Experimental evidence of low-density liquid water upon rapid decompression [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(9): 2010–2015. doi: 10.1073/pnas.1716310115
    [29] LIN C L, SMITH J S, SINOGEIKIN S V, et al. A metastable liquid melted from a crystalline solid under decompression [J]. Nature Communications, 2017, 8: 14260. doi: 10.1038/ncomms14260
    [30] LIN C L, SMITH J S, SINOGEIKIN S V, et al. Kinetics of the B1-B2 phase transition in KCl under rapid compression [J]. Journal of Applied Physics, 2016, 119(4): 045902. doi: 10.1063/1.4940771
    [31] LIN C L, YONG X, TSE J S, et al. Kinetically controlled two-step amorphization and amorphous-amorphous transition in ice [J]. Physical Review Letters, 2017, 119(13): 135701. doi: 10.1103/PhysRevLett.119.135701
    [32] CHENG H, ZHANG J R, LI Y C, et al. A convenient dynamic loading device for studying kinetics of phase transitions and metastable phases using symmetric diamond anvil cells [J]. High Pressure Research, 2018, 38(1): 32–40. doi: 10.1080/08957959.2017.1396326
    [33] DOU X M, DING K, SUN B Q. Development and application of piezoelectric driving diamond anvil cell device [J]. Review of Scientific Instruments, 2017, 88(12): 123105. doi: 10.1063/1.4996063
    [34] XUE Y Z, WANG H, TAN Q H, et al. Anomalous pressure characteristics of defects in hexagonal boron nitride flakes [J]. ACS Nano, 2018, 12(7): 7127–7133. doi: 10.1021/acsnano.8b02970
    [35] 中国科学院化学研究所, 中国科学院大学. 一种用于钻石对顶砧的双向动态加载/卸载的装置和方法: CN110018273A [P]. 2019-07-16.
    [36] 中国科学院化学研究所, 中国科学院大学. 一种对钻石对顶砧系统内的样品实现速率可调的加载/卸载的方法: CN111435109A [P]. 2020-07-21.
    [37] ZHANG L, SHI K Y, WANG Y L, et al. Compression rate-dependent crystallization of pyridine [J]. The Journal of Physical Chemistry C, 2021, 125(12): 6983–6989. doi: 10.1021/acs.jpcc.1c01163
    [38] ZHANG L, SHI K Y, WANG Y L, et al. Unraveling the anomalous mechanoluminescence intensity change and pressure-induced red-shift for manganese-doped zinc sulfide [J]. Nano Energy, 2021, 85: 106005. doi: 10.1016/j.nanoen.2021.106005
  • 加载中
图(9)
计量
  • 文章访问数:  824
  • HTML全文浏览量:  552
  • PDF下载量:  91
出版历程
  • 收稿日期:  2021-08-12
  • 修回日期:  2021-08-26

目录

    /

    返回文章
    返回