含有断裂缺陷的复合材料壳体的力学行为

柏慧 惠虎 杨斌 孔芳

柏慧, 惠虎, 杨斌, 孔芳. 含有断裂缺陷的复合材料壳体的力学行为[J]. 高压物理学报, 2021, 35(3): 034205. doi: 10.11858/gywlxb.20200649
引用本文: 柏慧, 惠虎, 杨斌, 孔芳. 含有断裂缺陷的复合材料壳体的力学行为[J]. 高压物理学报, 2021, 35(3): 034205. doi: 10.11858/gywlxb.20200649
BAI Hui, HUI Hu, YANG Bin, KONG Fang. Mechanical Behavior Analysis of Composite Shell with Fracture Defect[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 034205. doi: 10.11858/gywlxb.20200649
Citation: BAI Hui, HUI Hu, YANG Bin, KONG Fang. Mechanical Behavior Analysis of Composite Shell with Fracture Defect[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 034205. doi: 10.11858/gywlxb.20200649

含有断裂缺陷的复合材料壳体的力学行为

doi: 10.11858/gywlxb.20200649
基金项目: 国家自然科学基金(51775187,51835003)
详细信息
    作者简介:

    柏 慧(1994-),女,博士,主要从事压力容器和管道结构的完整性及安全性研究. E-mail:dongyoubaihui@163.com

    通讯作者:

    惠 虎(1974-),男,博士,教授,主要从事压力容器及管道结构完整性、奥氏体不锈钢容器的应变强化技术以及移动式压力容器的安全泄放装置研究. E-mail:huihu@ecust.edu.cn

  • 中图分类号: O521.3

Mechanical Behavior Analysis of Composite Shell with Fracture Defect

  • 摘要: 利用湿法缠绕制备了玻璃纤维增强环氧树脂基复合材料壳体,通过拉伸、双悬臂梁和三点端部开口弯曲试验对该复合材料层合板进行基本力学性能评估,得到强度和刚度参数并用于有限元模拟中。同时,在Abaqus中建立了含有不同深度断裂缺陷复合材料壳体的三维渐进损伤有限元模型,预测内压作用下壳体的力学响应。试验和模拟结果表明:复合材料主向拉伸强度为(222.7 ± 18)MPa,弹性模量为39.39 GPa,Ⅰ型和Ⅱ型断裂韧性层间强度分别为(4.67 ± 0.24)和(4.98 ± 0.26)kJ/m2。随着内压增大,Mises应力也不断增大;当断裂缺陷在最深层(接近内压的第一层,深度为18 mm)时,Mises应力最大;当内压为0.3 MPa时,Mises应力高达28.8 MPa,且周向应变小于纵向应变。

     

  • 图  试样制备及其力学性能测试:(a)复合材料压力容器,(b)双悬臂梁试验,(c)三点端部开口弯曲试验

    Figure  1.  Sample preparation and mechanical properties tests: (a) composite pressure vessel,(b) double cantilever beam test,(c) three-point end opening bending test

    图  含有断裂缺陷的复合材料壳体的模拟:(a)有限元模型及缺陷位置,(b)边界条件及加载位置

    Figure  2.  Simulation of composite shell with fracture defect: (a) finite element model and defect position,(b) boundary condition and loading position

    图  含有不同断裂缺陷深度的壳体的应力分布

    Figure  3.  Stress distribution of the shell with different fracture defect depths

    图  含不同深度断裂缺陷的复合材料壳体的应力分布

    Figure  4.  Stress distribution of composite shell with different depth fracture defects

    图  含有不同深度断裂缺陷的复合材料壳体的应变分布

    Figure  5.  Strain distribution of composite shell with different depth fracture defects

    表  1  玻璃纤维/环氧树脂复合材料板的刚度参数[20-21]

    Table  1.   Stiffness parameters of glass fiber/epoxy resin composite plate[20-21]

    E1/GPaE2/GPaE3/GPaG12/GPaG13/GPaG23/GPav12v13v23
    39.39 ± 0.3618.10 ± 0.2418.10 ± 0.246.31 ± 0.386.00 ± 0.276.00 ± 0.270.270 ± 0.0120.350 ± 0.0150.350 ± 0.015
    下载: 导出CSV

    表  2  玻璃纤维/环氧树脂复合材料板的强度参数[20-21]

    Table  2.   Strength parameters of glass fiber/epoxy resin composite plate[20-21] MPa 

    XTXCYTYCZTZCS12S13S23
    222.7 ± 18.0200 ± 22136 ± 22100 ± 450 ± 2100 ± 490.5 ± 4.250.00 ± 3.1250.00 ± 3.12
    下载: 导出CSV
  • [1] 陈建良, 童永光. 复合材料在压力容器中的应用 [J]. 压力容器, 2001, 18(6): 47–50. doi: 10.3969/j.issn.1001-4837.2001.06.013

    CHEN J L, TONG Y G. The application of composite materials to pressure vessels [J]. Pressure Vessel Technology, 2001, 18(6): 47–50. doi: 10.3969/j.issn.1001-4837.2001.06.013
    [2] HER S C, LIANG Y C. The finite element analysis of composite laminates and shell structures subjected to low velocity impact [J]. Composite Structures, 2004, 66(1/2/3/4): 277–285. doi: 10.1016/j.compstruct.2004.04.049
    [3] 郑津洋, 傅强, 开方明, 等. 轻质高压贮氢容器的现状及发展趋势 [J]. 太阳能学报, 2004, 25(5): 576–581. doi: 10.3321/j.issn:0254-0096.2004.05.003

    ZHENG J Y, FU Q, KAI F M, et al. The state of art of lightweight high-pressure hydrogen storage tanks [J]. Acta Energiae Solaris Sinica, 2004, 25(5): 576–581. doi: 10.3321/j.issn:0254-0096.2004.05.003
    [4] GRIMSLEY B W, CANO R J, JOHNSTON N J, et al. Hybrid composites for LH2 fuel tank structure [C]//33rd International SAMPE Technical Conference. Seattle, WA, 2001: 1224−1235.
    [5] MARTINS A T, ABOURA Z, HARIZI W, et al. Structural health monitoring for GFRP composite by the piezoresistive response in the tufted reinforcements [J]. Composite Structures, 2019, 209: 103–111. doi: 10.1016/j.compstruct.2018.10.091
    [6] HAN M G, CHANG S H. Failure analysis of a Type Ⅲ hydrogen pressure vessel under impact loading induced by free fall [J]. Composite Structures, 2015, 127: 288–297. doi: 10.1016/j.compstruct.2015.03.027
    [7] HALE K F. An optical-fibre fatigue crack-detection and monitoring system [J]. Smart Materials and Structures, 1992, 1: 156–161. doi: 10.1088/0964-1726/1/2/009
    [8] GHIMIRE M, WANG C J, DIXON K, et al. In situ monitoring of prestressed concrete using embedded fiber loop ringdown strain sensor [J]. Measurement, 2018, 124: 224–232. doi: 10.1016/j.measurement.2018.04.017
    [9] LU Z J, BLAHA F A. A fiber optic strain and impact sensor system for composite materials [C]//Proceedings Volume 1170, Fiber Optic Smart Structures and Skins II. Boston, United States: SPIE, 1989.
    [10] 赵海涛. 基于光纤传感技术的复合材料结构全寿命健康监测研究[D]. 哈尔滨: 哈尔滨工业大学, 2008.

    ZHAO H T. Research on whole life health monitoring of composites structure based on fiber optic sensing technology [D]. Harbin: Harbin Institute of Technology, 2008.
    [11] TOUGHIRY M. Examination of the nondestructive evaluation of composite gas cylinders [R]. Austin, TX: The Nondestructive Testing Information Analysis Center, 2002.
    [12] LEH D, SAFFRÉ P, FRANCESCATO P, et al. A progressive failure analysis of a 700-bar type IV hydrogen composite pressure vessel [J]. International Journal of Hydrogen Energy, 2015, 40(38): 13206–13214. doi: 10.1016/j.ijhydene.2015.05.061
    [13] WANG L, ZHENG C X, LUO H Y, et al. Continuum damage modeling and progressive failure analysis of carbon fiber/epoxy composite pressure vessel [J]. Composite Structures, 2015, 134: 475–482. doi: 10.1016/j.compstruct.2015.08.107
    [14] LIU P F, ZHENG J Y. Progressive failure analysis of carbon fiber/epoxy composite laminates using continuum damage mechanics [J]. Materials Science and Engineering: A, 2008, 485(1/2): 711–717. doi: 10.1016/j.msea.2008.02.023
    [15] 杨斌, 章继峰, 周利民. 玻璃纤维-碳纤维混杂增强PCBT复合材料层合板的制备及低速冲击性能 [J]. 复合材料学报, 2015, 32(2): 435–443. doi: 10.13801/j.cnki.fhclxb.201502.004

    YANG B, ZHANG J F, ZHOU L M. Preparation and low-velocity impact properties of glass fiber-carbon fiber hybrid reinforced PCBT composite laminate [J]. Acta Materiae Compositae Sinica, 2015, 32(2): 435–443. doi: 10.13801/j.cnki.fhclxb.201502.004
    [16] OKABE Y, TSUJI R, TAKEDA N. Application of chirped fiber Bragg grating sensors for identification of crack locations in composites [J]. Composites Part A: Applied Science and Manufacturing, 2004, 35(1): 59–65. doi: 10.1016/j.compositesa.2003.09.004
    [17] 肖飚, 杨斌, 胡超杰, 等. 基于埋入式应变片的纤维缠绕压力容器的健康监测 [J]. 高压物理学报, 2019, 33(4): 043401. doi: 10.11858/gywlxb.20190726

    XIAO B, YANG B, HU C J, et al. Structural health monitoring of filament wound pressure vessel by embedded strain gauges [J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 043401. doi: 10.11858/gywlxb.20190726
    [18] KANERVA M, ANTUNES P, SARLIN E, et al. Direct measurement of residual strains in CFRP-tungsten hybrids using embedded strain gauges [J]. Materials and Design, 2017, 127: 352–363. doi: 10.1016/j.matdes.2017.04.008
    [19] BAI H, YANG B, HUI H, et al. Experimental and numerical investigation of the strain response of the filament wound pressure vessels subjected to pressurization test [J]. Polymer Composites, 2019, 40(11): 4427–4441. doi: 10.1002/pc.25304
    [20] ALSHAHRANI R F, MERAH N, KHAN S M A, et al. On the impact-induced damage in glass fiber reinforced epoxy pipes [J]. International Journal of Impact Engineering, 2016, 97: 57–65. doi: 10.1016/j.ijimpeng.2016.06.002
    [21] YANG B, HE L, GAO Y. Simulation on impact response of FMLs: effect of fiber stacking sequence, thickness, and incident angle [J]. Science and Engineering of Composite Materials, 2018, 25(3): 621–631. doi: 10.1515/secm-2016-0226
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  3969
  • HTML全文浏览量:  1377
  • PDF下载量:  41
出版历程
  • 收稿日期:  2020-12-04
  • 修回日期:  2020-12-21

目录

    /

    返回文章
    返回