超高压处理优化藜麦蛋白的乳化性能

乜世成 张炜 田格 王志娟 甘文梅 高红

乜世成, 张炜, 田格, 王志娟, 甘文梅, 高红. 超高压处理优化藜麦蛋白的乳化性能[J]. 高压物理学报, 2021, 35(3): 035901. doi: 10.11858/gywlxb.20200645
引用本文: 乜世成, 张炜, 田格, 王志娟, 甘文梅, 高红. 超高压处理优化藜麦蛋白的乳化性能[J]. 高压物理学报, 2021, 35(3): 035901. doi: 10.11858/gywlxb.20200645
NIE Shicheng, ZHANG Wei, TIAN Ge, WANG Zhijuan, GAN Wenmei, GAO Hong. Improvement of Emulsification Performance of Quinoa Protein by Ultra-High Pressure Treatment[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 035901. doi: 10.11858/gywlxb.20200645
Citation: NIE Shicheng, ZHANG Wei, TIAN Ge, WANG Zhijuan, GAN Wenmei, GAO Hong. Improvement of Emulsification Performance of Quinoa Protein by Ultra-High Pressure Treatment[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 035901. doi: 10.11858/gywlxb.20200645

超高压处理优化藜麦蛋白的乳化性能

doi: 10.11858/gywlxb.20200645
基金项目: 高原人工湿地生态平衡构建与应用示范项目(2021-SF-13)
详细信息
    作者简介:

    乜世成(1995-),男,硕士研究生,主要从事天然产物分离与提取研究.E-mail:www.nie453430880@qq.com

    通讯作者:

    张 炜(1972-),女,硕士,教授,主要从事天然产物分离与提取研究.E-mail:zhangwei@qhnu.edu.cn

  • 中图分类号: O521.9; S983

Improvement of Emulsification Performance of Quinoa Protein by Ultra-High Pressure Treatment

  • 摘要: 利用超高压处理藜麦蛋白,研究超高压保压压力、超高压保压时间及蛋白质量分数对藜麦蛋白乳化性的影响。采用响应面法优化超高压处理条件,得到最佳工艺条件,并利用傅里叶红外光谱、粒度仪、X射线衍射(XRD)等表征方法分析乳液蛋白质的表面性质及结构特征。结果表明:保压压力为235 MPa、保压时间为5.2 min、蛋白质量分数为0.34%时,乳化指数为119 m2/g。同时,由傅里叶红外光谱分析蛋白二级结构可知,变性后藜麦蛋白的α-螺旋结构含量降低,β-转角结构含量增加,分子无序性增加,蛋白乳化性提高。XRD分析发现,改性后蛋白在2$\theta $ = 10°附近的峰强度明显减小,说明α-螺旋结构含量降低。改性后乳液蛋白粒度减小,其乳化性提升。因此,适当的超高压处理可以改善藜麦蛋白的乳化性。

     

  • 图  蛋白质量分数对藜麦蛋白乳化性和乳化稳定性的影响

    Figure  1.  Effect of protein mass fraction on the emulsifying property and emulsion stability of quinoa protein

    图  保压压力对藜麦蛋白乳化性和乳化稳定性的影响

    Figure  2.  Effect of the holding pressure on the emulsifying property and emulsion stability of quinoa protein

    图  保压时间对藜麦蛋白乳化性和乳化稳定性的影响

    Figure  3.  Effect of holding pressure time on the emulsifying property and emulsion stability of quinoa protein

    图  响应面模型

    Figure  4.  Response surface model

    图  藜麦蛋白改性前、后的红外光谱分析

    Figure  5.  Infrared spectrum analysis of quinoaprotein before and after modification

    图  藜麦蛋白改性前、后蛋白酰胺Ⅰ带的拟合图谱

    Figure  6.  Protein amide Ⅰ fitting map of quinoa protein before and after the modification

    图  藜麦蛋白改性前、后的粒径分布

    Figure  7.  Particle size distribution of quinoaprotein before and after modification

    图  藜麦蛋白改性前、后的XRD分析图谱

    Figure  8.  XRD patterns of quinoa proteinbefore and after modification

    表  1  响应面分析法的因素-水平表

    Table  1.   Factors and levels of response surface method

    LevelsFactors
    p/MPat/minM/%
    −120030.2
    025060.4
    130090.6
    下载: 导出CSV

    表  2  响应面分析方案及实验结果

    Table  2.   Experimental design and results of response surface method

    Test No.LevelsaEAI/(m2·g−1)
    p t M
    1 1 1 0 91
    2 0 1−1 94
    3 0 0 0121
    4 0−1 1 80
    5 1−1 0102
    6 0 0 0112
    7−1−1 0111
    8 0 0 0125
    9 1 0 1 69
    10−1 0 1 82
    11 0 0 0120
    12−1 0−1109
    13 0 1 1 71
    14 1 0−1 99
    15 0 0 0128
    16−1 1 0105
    17 0−1−1110
    下载: 导出CSV

    表  3  线性回归分析结果

    Table  3.   Results of linear regression analysis

    Source of variationQuadratic sumMean squareDegree of freedomFP
    Model**5162.73573.64925.610.0002
    p*264.50264.50111.810.0109
    t*220.50220.5019.840.0164
    M**1512.501512.50167.52< 0.0001
    pt6.256.2510.280.6137
    pM2.252.2510.100.7605
    tM12.2512.2510.550.4837
    p2**339.16339.16115.140.0060
    t2**418.95418.95118.700.0035
    M2**2126.842126.84194.95< 0.0001
    Residual156.8022.407
    Lack of fit10.003.3330.0910.9613
    Pure error146.8036.704
    Cor total5319.5316
    下载: 导出CSV

    表  4  藜麦蛋白改性前、后蛋白质二级结构的含量

    Table  4.   Secondary structure content of quinoa protein before and after modification

    ProteinContent/%
    β-turnRandom coilα-helixβ-sheet
    Original protein31.6621.2722.3824.69
    Modified protein36.6323.7616.4625.15
    下载: 导出CSV
  • [1] ZURITA-SILVA A, FUENTES F, ZAMORA P, et al. Breeding quinoa (Chenopodium quinoa willd.): potential and perspectives [J]. Molecular Breeding, 2014, 34(1): 13–30. doi: 10.1007/s11032-014-0023-5
    [2] OSHODI A A, OGUNGBENLE H N, OLADIMEJI M O, et al. Chemical composition, nutritionally valuable minerals and functional properties of benniseed (Sesamum radiatum), pearl millet (Pennisetum typhoides) and quinoa (Chenopodium quinoa) flours [J]. International Journal of Food Sciences and Nutrition, 1999, 50(5): 325–331. doi: 10.1080/096374899101058
    [3] GALLEGO VILLA D Y, RUSSO L, KERBAB K, et al. Chemical and nutritional characterization of Chenopodium pallidicaule (cañihua) and Chenopodium quinoa (quinoa) seeds [J]. Emirates Journal of Food and Agriculture, 2014, 26(7): 609–615. doi: 10.9755/ejfa.v26i7.18187
    [4] 王黎明, 马宁, 李颂, 等. 藜麦的营养价值及其应用前景 [J]. 食品工业科技, 2014, 35(1): 381–384, 389.

    WANG L M, MA N, LI S, et al. Nutritional properties of quinoa and its application prospects [J]. Science and Technology of Food Industry, 2014, 35(1): 381–384, 389.
    [5] KOZIOŁ M J. Chemical composition and nutritional evaluation of quinoa (Chenopodium quinoa Willd.) [J]. Journal of Food Composition and Analysis, 1992, 5(1): 35–68. doi: 10.1016/0889-1575(92)90006-6
    [6] REPO-CARRASCO R, ESPINOZA C, JACOBSEN S E. Nutritional value and use of the andean crops quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule) [J]. Food Reviews International, 2003, 19(1/2): 179–189. doi: 10.1081/FRI-120018884
    [7] CAPRIOTTI A L, CAVALIERE C, PIOVESANA S, et al. Characterization of quinoa seed proteome combining different protein precipitation techniques: improvement of knowledge of nonmodel plant proteomics [J]. Journal of Separation Science, 2015, 38(6): 1017–1025. doi: 10.1002/jssc.201401319
    [8] 王晨静, 赵习武, 陆国权, 等. 藜麦特性及开发利用研究进展 [J]. 浙江农林大学学报, 2014, 31(2): 296–301. doi: 10.11833/j.issn.2095-0756.2014.02.020

    WANG C J, ZHAO X W, LU G Q, et al. A review of characteristics and utilization of Chenopodium quinoa [J]. Journal of Zhejiang A & F University, 2014, 31(2): 296–301. doi: 10.11833/j.issn.2095-0756.2014.02.020
    [9] HYUN D H, LEE M H, HALLIWELL B, et al. Proteasomal inhibition causes the formation of protein aggregates containing a wide range of proteins, including nitrated proteins [J]. Journal of Neurochemistry, 2003, 86(2): 363–373. doi: 10.1046/j.1471-4159.2003.01841.x
    [10] 王龙飞, 王新伟, 赵仁勇. 藜麦蛋白的特点、性质及提取的研究进展 [J]. 食品工业, 2017, 38(7): 255–258.

    WANG L F, WANG X W, ZHAO R Y. A review of characteristic, properties and extraction of quinoa protein [J]. The Food Industry, 2017, 38(7): 255–258.
    [11] JAMBRAK A R, MASON T J, LELAS V, et al. Effect of ultrasound treatment on solubility and foaming properties of whey protein suspensions [J]. Journal of Food Engineering, 2008, 86(2): 281–287. doi: 10.1016/j.jfoodeng.2007.10.004
    [12] 张海芳, 李艳, 韩育梅, 等. 酶法改性对马铃薯渣膳食纤维单糖组分及理化性质的影响 [J]. 食品研究与开发, 2020, 41(1): 60–66. doi: 10.12161/j.issn.1005-6521.2020.01.010

    ZHANG H F, LI Y, HAN Y M, et al. Effects of different enzymatic modifications on monosaccharide composition and physicochemical properties of dietary fiber from potato pulp [J]. Food Research and Development, 2020, 41(1): 60–66. doi: 10.12161/j.issn.1005-6521.2020.01.010
    [13] ZHONG Q, JIN M. Enhanced functionalities of whey proteins treated with supercritical carbon dioxide [J]. Journal of Dairy Science, 2008, 91(2): 490–499. doi: 10.3168/jds.2007-0663
    [14] OEY I, LILLE M, VAN LOEY A, et al. Effect of high-pressure processing on colour, texture and flavour of fruit- and vegetable-based food products: a review [J]. Trends in Food Science & Technology, 2008, 19(6): 320–328. doi: 10.1016/j.jpgs.2008.04.001
    [15] 易建勇, 董鹏, 王永涛, 等. 应用SRCD和FTIR分析超高压处理对蘑菇多酚氧化酶二级结构的影响 [J]. 光谱学与光谱分析, 2012, 32(2): 317–323. doi: 10.3964/j.issn.1000-0593(2012)02-0317-07

    YI J Y, DONG P, WANG Y T, et al. Study on the effect of high hydrostatic pressure treatment on the secondary structure of mushroom polyphenoloxidase by SRCD and FTIR [J]. Spectroscopy and Spectral Analysis, 2012, 32(2): 317–323. doi: 10.3964/j.issn.1000-0593(2012)02-0317-07
    [16] 王硕, 黄薇, 王金荣, 等. 食品非热加工技术——超高压在蛋白质和淀粉改性中的应用 [J]. 中国食品学报, 2015, 15(6): 1–13. doi: 10.16429/j.1009-7848.2015.06.001

    WANG S, HUANG W, WANG J R, et al. Non-thermal processing technologies of food-the application of ultrahigh pressure in protein and starch modification [J]. Journal of Chinese Institute of Food Science and Technology, 2015, 15(6): 1–13. doi: 10.16429/j.1009-7848.2015.06.001
    [17] 刘坚, 江波, 张涛, 等. 超高压对鹰嘴豆分离蛋白功能性质的影响 [J]. 食品与发酵工业, 2006, 32(12): 64–68. doi: 10.3321/j.issn:0253-990X.2006.12.015

    LIU J, JIANG B, ZHANG T, et al. Effect of ultra high pressure on the functional properties of chickpea protein isolate [J]. Food and Fermentation Industries, 2006, 32(12): 64–68. doi: 10.3321/j.issn:0253-990X.2006.12.015
    [18] JIANG J, CHEN J, XIONG Y L. Structural and emulsifying properties of soy protein isolate subjected to acid and alkaline pH-shifting processes [J]. Journal of Agricultural and Food Chemistry, 2009, 57(16): 7576–7583. doi: 10.1021/jf901585n
    [19] SUREWICZ W K, MANTSCH H H. New insight into protein secondary structure from resolution-enhanced infrared spectra [J]. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1988, 952: 115–130. doi: 10.1016/0167-4838(88)90107-0
    [20] 胡淼, 赵城彬, 李杨, 等. 糖基化反应对绿豆分离蛋白空间结构及乳液性质的影响 [J]. 中国食品学报, 2018, 18(11): 50–56.

    HU M, ZHAO C B, LI Y, et al. Effect of glycation reaction on spatial structure conformation and emulsion properties of mung bean protein isolate [J]. Journal of Chinese Institute of Food Science and Technology, 2018, 18(11): 50–56.
    [21] 李仁杰, 廖小军, 胡小松, 等. 超高压对蛋白质的影响 [J]. 高压物理学报, 2014, 28(4): 498–506. doi: 10.11858/gywlxb.2014.04.017

    LI R J, LIAO X J, HU X S, et al. Effects of high hydrostatic pressure on proteins [J]. Chinese Journal of High Pressure Physics, 2014, 28(4): 498–506. doi: 10.11858/gywlxb.2014.04.017
    [22] 李明月, 杜钰, 姚晓玲, 等. 超高压处理对蛋白质功能特性的影响 [J]. 食品科技, 2018, 43(1): 50–54.

    LI M Y, DU Y, YAO X L, et al. Effects of ultrahigh pressure processing on protein functional properties [J]. Food Science and Technology, 2018, 43(1): 50–54.
    [23] 王岁楼, 张国超. 超高压对小麦蛋白乳化性和乳化稳定性的影响 [J]. 食品与机械, 2008, 24(2): 9–11.

    WANG S L, ZHANG G C. Effects of ultra-high pressure on the emulsification activity and stability of wheat protein [J]. Food & Machinery, 2008, 24(2): 9–11.
    [24] 袁道强, 郭书爱. 超高压对大豆分离蛋白乳化性影响 [J]. 粮食与油脂, 2009(12): 23–25. doi: 10.3969/j.issn.1008-9578.2009.12.008

    YUAN D Q, GUO S A. Effects of ultra-high pressure on emulsifying properties of soy protein isolated [J]. Journal of Cereals & Oils, 2009(12): 23–25. doi: 10.3969/j.issn.1008-9578.2009.12.008
    [25] 纵伟, 陈怡平. 超高压对花生分离蛋白乳化性的影响 [J]. 中国油脂, 2008, 33(3): 26–28. doi: 10.3321/j.issn:1003-7969.2008.03.007

    ZONG W, CHEN Y P. Effect of ultra high pressure on the emulsifying ability of peanut protein isolate [J]. China Oils and Fats, 2008, 33(3): 26–28. doi: 10.3321/j.issn:1003-7969.2008.03.007
    [26] FLOURY J, DESRUMAUX A, LEGRAND J. Effect of ultra-high-pressure homogenization on structure and on rheological properties of soy protein-stabilized emulsions [J]. Journal of Food Science, 2002, 67(9): 3388–3395. doi: 10.1111/j.1365-2621.2002.tb09595.x
    [27] HASSAN POUR A, SAFIEDDIN ARDEBILI S M, SHEIKHDAVOODI M J. Multi-objective optimization of diesel engine performance and emissions fueled with diesel-biodiesel-fusel oil blends using response surface method [J]. Environmental Science and Pollution Research, 2018, 25(35): 35429–35439. doi: 10.1007/s11356-018-3459-z
    [28] 刘龙. 牦牛乳清蛋白泡沫分离及功能特性改善研究[D]. 青海: 青海师范大学, 2018.
    [29] 汪超, 李阜烁, 林文珍, 等. 响应面法优化酪蛋白源多肽制备工艺 [J]. 中国乳品工业, 2018, 46(12): 4–8. doi: 10.3969/j.issn.1001-2230.2018.12.001

    WANG C, LI F S, LIN W Z, et al. Optimization of preparing casein derived peptides by response surface methodology [J]. China Dairy Industry, 2018, 46(12): 4–8. doi: 10.3969/j.issn.1001-2230.2018.12.001
    [30] BARTH A. Infrared spectroscopy of proteins [J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2007, 1767(9): 1073–1101. doi: 10.1016/j.bbabio.2007.06.004
    [31] CHOI S M, MA C Y. Structural characterization of globulin from common buckwheat (Fagopyrum esculentum Moench) using circular dichroism and Raman spectroscopy [J]. Food Chemistry, 2007, 102(1): 150–160. doi: 10.1016/j.foodchem.2006.05.011
    [32] 赵贵川. 超高压处理对米渣蛋白水解物抗氧化活性的影响[D]. 长沙: 中南林业科技大学, 2016.
    [33] 李超, 蒲彪, 罗松明, 等. pH和NaCl浓度对花椒籽仁分离蛋白乳化性的影响 [J]. 食品与发酵工业, 2017, 43(6): 92–97. doi: 10.13995/j.cnki.11-1802/ts.201706015

    LI C, PU B, LUO S M, et al. Emulsifing properties of Zanthoxylum bungeanum Maxim seed kernel protein isolate: effect of pH and NaCl concentration [J]. Food and Fermentation Industries, 2017, 43(6): 92–97. doi: 10.13995/j.cnki.11-1802/ts.201706015
    [34] BENDIT E G. A quantitative X-ray diffraction study of the α-β transformation in wool keratin [J]. Textile Research Journal, 1960, 30(8): 547–555. doi: 10.1177/004051756003000801
    [35] ZHAO X Y, ZHU H T, ZHANG B W, et al. XRD, SEM, and XPS analysis of soybean protein powders obtained through extraction involving reverse micelles [J]. Journal of the American Oil Chemists’ Society, 2015, 92(7): 975–983. doi: 10.1007/s11746-015-2657-9
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  4022
  • HTML全文浏览量:  1434
  • PDF下载量:  22
出版历程
  • 收稿日期:  2020-11-30
  • 修回日期:  2020-12-17

目录

    /

    返回文章
    返回