新型薄壁管耐撞性分析及优化设计

尹华伟 王陈凌 段金曦 刘利民

尹华伟, 王陈凌, 段金曦, 刘利民. 新型薄壁管耐撞性分析及优化设计[J]. 高压物理学报, 2021, 35(3): 034202. doi: 10.11858/gywlxb.20200624
引用本文: 尹华伟, 王陈凌, 段金曦, 刘利民. 新型薄壁管耐撞性分析及优化设计[J]. 高压物理学报, 2021, 35(3): 034202. doi: 10.11858/gywlxb.20200624
YIN Huawei, WANG Chenling, DUAN Jinxi, LIU Limin. Crashworthiness Analysis and Optimization Design of New Thin-Walled Tube[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 034202. doi: 10.11858/gywlxb.20200624
Citation: YIN Huawei, WANG Chenling, DUAN Jinxi, LIU Limin. Crashworthiness Analysis and Optimization Design of New Thin-Walled Tube[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 034202. doi: 10.11858/gywlxb.20200624

新型薄壁管耐撞性分析及优化设计

doi: 10.11858/gywlxb.20200624
基金项目: 国家重点研发计划(2016YFC0701405)
详细信息
    作者简介:

    尹华伟(1972-),男,博士,副教授,主要从事爆炸与冲击动力学研究. E-mail:yhwzzy@163.com

  • 中图分类号: O347.3

Crashworthiness Analysis and Optimization Design of New Thin-Walled Tube

  • 摘要: 采用LS-DYNA仿真软件对新型薄壁管在轴向冲击荷载作用下进行了数值模拟,分析了上端薄壁圆管长度和波纹型诱导槽半径对其耐撞性及变形模式的影响,并与普通薄壁圆管进行比较。结果表明:当上端薄壁圆管长度及波纹形诱导槽半径设计合理时,新型薄壁管在压溃阶段的最大峰值压溃力、比吸能以及变形模式相比于普通薄壁圆管更优异。为了获得更好吸能效果的新型薄壁管,以其比吸能和最大峰值压溃力为优化指标,以上端薄壁圆管长度和波纹形诱导槽半径为动态变量,建立了新型薄壁管多目标优化方案。基于Kriging法构造了目标近似函数,同时结合NSGA-Ⅱ算法求解了多目标优化问题。

     

  • 图  新型薄壁管示意图

    Figure  1.  Schematic diagram of the new thin-walled tube

    图  高强度钢有效应力-应变曲线

    Figure  2.  Stress-strain characteristic of high-strength steel

    图  网格灵敏度分析

    Figure  3.  Mesh sensitivity analysis

    图  压溃力-位移的实测值与计算值

    Figure  4.  Force-displacement curves of experiment and simulation

    图  新型薄壁管的3种代表性变形模式

    Figure  5.  Three representative deformation modes of new thin-walled tubes

    图  变形模式分布

    Figure  6.  Classification of the deformation modes

    图  h0r0h25r1.0在不同时刻下变形模式的比较

    Figure  7.  Comparison of deformation modes of h0r0 and h25r1.0 at different time

    图  压溃力-位移曲线

    Figure  8.  Force-displacement curves

    图  新型薄壁管h40r0.5h20r1.0的压溃过程

    Figure  9.  Crushing processes of h40r0.5 and h20r1.0

    图  10  h0r0h25r2.0的压溃力及比吸能的比较

    Figure  10.  Comparisons of crushing force and SEA between h0r0 and h25r2.0

    图  11  新型薄壁管及薄壁圆管耐撞性评价指标柱状图

    Figure  11.  Histogram of crashworthiness evaluation indexes for thin-walled tubes

    图  12  Kriging近似模型响应面

    Figure  12.  Response surface of Kriging approximate model

    图  13  新型薄壁管比吸能-最大峰值压溃力的Pareto前沿

    Figure  13.  Pareto front of SEA and Fmax of new thin-walled tubes

    表  1  实验试件几何参数及实验细节

    Table  1.   Geometric parameters of the specimen and the test details

    TypeLength/mmThickness/mmDiameter/mmImpact mass/kgImpact velocity/(m·s−1Impact energy/kJ
    HS-10900.8312005.483
    HS-11900.8311007.753
    下载: 导出CSV

    表  2  有限元分析结果与实验值对比

    Table  2.   Comparisons of experimental results and calculated results

    TypeMaximum peak crushing forceEnergy absorptionCrushing displacement
    Exp./kNCalc./kNError/%Exp./kJCalc./kJError/%Exp./mmCalc./mmError/%
    HS-10114.0113.20.72.932.920.366.264.23.0
    HS-11116.0114.11.62.942.911.065.863.33.8
    下载: 导出CSV

    表  3  响应面模型精度评估

    Table  3.   Accuracy evaluations of the response surface model

    IndexR2RMSERE
    SEA0.99670.0476[–0.0476,0.0464]
    Fmax0.98140.0518[–0.0362,0.0437]
    下载: 导出CSV

    表  4  优化结果、仿真结果和原模型的对比

    Table  4.   Comparison of optimized results, calculated results and results of original model

    Methodh1/mmr/mmSEA/(J·g−1Fmax/kN
    Optimized30.211.3967.53109.63
    Calculated30.211.3968.23111.98
    Original model0062.42123.89
    下载: 导出CSV
  • [1] ZHANG Y C, XU P, PENG Y, et al. Crashworthiness optimization of high-speed train front multi-cell energy-absorbing structures [J]. Journal of Vibration and Shock, 2017, 36(12): 31–36.
    [2] 张雄. 轻质薄壁结构耐撞性分析与设计优化[D]. 大连: 大连理工大学, 2008: 1−13.

    ZHANG X. Crashworthiness analysis and design optimization of light thin-walled structures [D]. Dalian: Dalian University of Technology, 2008: 1−13.
    [3] LU G X, YU T X. Energy absorption of structures and materials [M]. Cambridge: Woodhead Publishing Limited, 2003: 3−8.
    [4] AVALL M, CHIANDUSSI G. Optimization of a vehicle energy absorbing steel component with experimental validation [J]. International Journal of Impact Engineering, 2007, 34(4): 843–858. doi: 10.1016/j.ijimpeng.2006.02.001
    [5] 谭丽辉, 谭洪武, 毛志强, 等. 具有不同诱导槽结构的薄壁圆管抗撞性优化 [J]. 振动与冲击, 2014, 33(8): 16–21.

    TAN L H, TAN H W, MAO Z Q, et al. Crashworthiness design optimization of thin-walled cylinders with different inducing grooves [J]. Journal of Vibration and Shock, 2014, 33(8): 16–21.
    [6] EYVAZIAN A, HABIBI M K, HAMOUDA A M, et al. Axial crushing behavior and energy absorption efficiency of corrugated tubes [J]. Materials and Design, 2014, 54: 1028–1038. doi: 10.1016/j.matdes.2013.09.031
    [7] LIU Z F, HAO W Q, XIE J M, et al. Axial-impact buckling modes and energy absorption properties of thin-walled corrugated tubes with sinusoidal patterns [J]. Thin-Walled Structures, 2015, 94: 410–423. doi: 10.1016/j.tws.2015.05.002
    [8] 朱江涛, 徐鹏, 蔡宣明. 高g值冲击下阶梯形金属壳缓冲吸能特性研究 [J]. 兵器材料科学与工程, 2016, 39(6): 92–97.

    ZHU J T, XU P, CAI X M. Energy absorption characteristics of stepped metal shell under high g value [J]. Ordnance Material Science and Engineering, 2016, 39(6): 92–97.
    [9] HA N S, LU G X, XIANG X M. High energy absorption efficiency of thin-walled conical corrugation tubes mimicking coconut tree configuration [J]. International Journal of Mechanical Sciences, 2018, 148: 409–421. doi: 10.1016/j.ijmecsci.2018.08.041
    [10] WU S, LI G, SUN G, et al. Crashworthiness analysis and optimization of sinusoidal corrugation tube [J]. Thin-Walled Structures, 2016, 105: 121–134. doi: 10.1016/j.tws.2016.03.029
    [11] TAI Y S, HUANG M Y, HU H T. Axial compression and energy absorption characteristics of high-strength thin-walled cylinders under impact load [J]. Theoretical and Applied Fracture Mechanics, 2010, 53(1): 1–8. doi: 10.1016/j.tafmec.2009.12.001
    [12] Livermore Software Technology Corporation. LS-DYNA keyword user’s manual [M]. Livermore, CA: Livermore Software Technology Corporation (LSTC), 2014: 1−10.
    [13] MENG Z, SUN Q. Energy-absorption characteristics of thin-walled tube with different axial-section shapes under axial impulsive load [J]. Computer Simulation, 2010, 27(8): 325–329.
    [14] ACAR E, RAIS-ROHANI M. Ensemble of metamodels with optimized weight factors [J]. Structural and Multidisciplinary Optimization, 2009, 37(3): 279–294. doi: 10.1007/s00158-008-0230-y
    [15] ACAR E, GULER M A, GERÇEKER B, et al. Multi-objective crashworthiness optimization of tapered thin-walled tubes with axisymmetric indentations [J]. Thin-Walled Structures, 2011, 49(1): 94–105. doi: 10.1016/j.tws.2010.08.010
    [16] ZHANG Y, SUN G, LI G, et al. Optimization of foam-filled bitubal structures for crashworthiness criteria [J]. Materials and Design, 2012, 38(7): 99–109.
    [17] 邓志芳. 双级薄壁吸能管的抗撞性理论推导和实验研究[D]. 长沙: 湖南大学, 2017: 40−43.

    DENG Z F. Crashworthiness research of two-stage thin-walled tube from theoretical derivation and experimental study [D]. Changsha: Hunan University, 2017: 40−43.
    [18] 张枝丹. 多胞填充薄壁构件的抗撞性优化设计[D]. 长沙: 湖南大学, 2013: 15−18.

    ZHANG Z D. Optimization design of multi-cell thin-walled components with crashworthiness criterion [D]. Changsha: Hunan University, 2013: 15−18.
    [19] KALYANMOY D, AMRIT P, SAMEER A, et al. A fast and elitist multi-objective genetic algorithm: NSGA-Ⅱ [J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182–197. doi: 10.1109/4235.996017
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  3215
  • HTML全文浏览量:  1502
  • PDF下载量:  44
出版历程
  • 收稿日期:  2020-10-09
  • 修回日期:  2020-12-14

目录

    /

    返回文章
    返回